/** * Copyright 2013 The Loon Authors * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package loon.physics; import loon.core.geom.Vector2f; public class PCirclePolygonCollider implements PCollider { public PCirclePolygonCollider() { } public int collide(PShape s1, PShape s2, PContact[] cs) { if (s1._type != PShapeType.CIRCLE_SHAPE || s2._type != PShapeType.CONVEX_SHAPE && s2._type != PShapeType.BOX_SHAPE){ return 0; } PCircleShape c1 = (PCircleShape) s1; PConvexPolygonShape p1 = (PConvexPolygonShape) s2; float distance = -1F; int edgeNumber = -1; Vector2f vers[] = p1.vers; int numVers = p1.numVertices; Vector2f normal = new Vector2f(); Vector2f edgeNormal = new Vector2f(); Vector2f a = new Vector2f(); Vector2f b = new Vector2f(); int num = 0; for (int i = 0; i < numVers; i++) { a.set(c1._pos.x - vers[i].x, c1._pos.y - vers[i].y); distance = a.length(); distance -= c1.rad; if (distance <= 0.0F) { PContact c = new PContact(); c.overlap = distance; a.normalize(); c.normal.set(a.x, a.y); c.pos.set(vers[i].x, vers[i].y); cs[num] = c; if (++num == 2){ return num; } } } if (num > 0){ return num; } for (int i = 0; i < numVers; i++) { Vector2f ver = vers[i]; Vector2f nextVer = vers[(i + 1) % numVers]; float edgeX = nextVer.x - ver.x; float edgeY = nextVer.y - ver.y; edgeNormal.set(edgeY, -edgeX); edgeNormal.normalize(); a.set(c1._pos.x - ver.x, c1._pos.y - ver.y); b.set(c1._pos.x - nextVer.x, c1._pos.y - nextVer.y); if ((a.x * edgeX + a.y * edgeY) * (b.x * edgeX + b.y * edgeY) <= 0.0F) { float edgeLen = (float) Math .sqrt(edgeX * edgeX + edgeY * edgeY); float distanceToEdge = Math.abs(a.x * edgeY - a.y * edgeX) / edgeLen; if (distanceToEdge <= c1.rad) { distanceToEdge -= c1.rad; if (distance > distanceToEdge || distance == -1F) { edgeNumber = i; distance = distanceToEdge; normal.set(edgeNormal.x, edgeNormal.y); } } } } if (edgeNumber > -1) { PContact c = new PContact(); c.overlap = distance; c.normal = normal; c.pos = c1._pos.sub(normal.mul(c1.rad)); cs[0] = c; return 1; } boolean hit = true; for (int i = 0; i < numVers; i++) { Vector2f ver = vers[i]; Vector2f nextVer = vers[(i + 1) % numVers]; float v1x = nextVer.x - ver.x; float v1y = nextVer.y - ver.y; float v2x = c1._pos.x - ver.x; float v2y = c1._pos.y - ver.y; if (v1x * v2y - v1y * v2x >= 0.0F){ continue; } hit = false; break; } if (hit) { distance = 1.0F; normal = new Vector2f(); for (int i = 0; i < numVers; i++) { Vector2f ver = vers[i]; Vector2f nextVer = vers[(i + 1) % numVers]; a.set(nextVer.x - ver.x, nextVer.y - ver.y); a.normalize(); float d = c1._pos.sub(ver).cross(a); if (d < 0.0F && (distance == 1.0F || distance < d)) { distance = d; normal.set(a.y, -a.x); } } if (distance != 1.0F) { PContact c = new PContact(); c.normal.set(normal.x, normal.y); c.pos.set(c1._pos.x, c1._pos.y); c.overlap = distance; cs[0] = c; return 1; } } return 0; } }