/**
*
*/
package test.dr.evomodel.operators;
import java.io.IOException;
import dr.evolution.tree.TreeUtils;
import dr.inference.operators.*;
import junit.framework.Test;
import junit.framework.TestSuite;
import dr.evolution.io.NewickImporter;
import dr.evolution.io.Importer.ImportException;
import dr.evolution.tree.FlexibleTree;
import dr.evomodel.operators.ImportanceSubtreeSwap;
import dr.evomodel.tree.TreeModel;
import dr.inference.model.Parameter;
/**
* @author shhn001
*
*/
public class ImportanceSubtreeSwapTestProblem extends OperatorAssert{
public static Test suite() {
return new TestSuite(ImportanceSubtreeSwapTestProblem.class);
}
/**
* Test method for {@link SimpleMCMCOperator#doOperation()}.
* @throws ImportException
* @throws IOException
*/
public void testDoOperation() throws IOException, ImportException {
// probability of picking (A,B) node is 1/(2n-3) = 1/7
// probability of swapping with D is 1/2
// total = 1/14
//probability of picking {D} node is 1/(2n-3) = 1/7
//probability of picking {A,B} is 1/5
// total = 1/35
//total = 1/14 + 1/35 = 7/70 = 0.1
System.out.println("Test 1: Forward");
String treeMatch = "(((D,C),(A,B)),E);";
int count = 0;
int reps = 100000;
for (int i = 0; i < reps; i++) {
TreeModel treeModel = new TreeModel("treeModel", tree5);
ImportanceSubtreeSwap operator = new ImportanceSubtreeSwap(treeModel, 1.0, 0);
operator.doOperation();
String tree = TreeUtils.newickNoLengths(treeModel);
if (tree.equals(treeMatch)) {
count += 1;
}
}
double p_1 = (double) count / (double) reps;
System.out.println("Number of proposals:\t" + count);
System.out.println("Number of tries:\t" + reps);
System.out.println("Number of ratio:\t" + p_1);
System.out.println("Number of expected ratio:\t" + 0.1);
assertExpectation(0.1, p_1, reps);
// lets see what the backward probability is for the hastings ratio
// (((D:2.0,C:2.0):1.0,(A:1.0,B:1.0):2.0):1.0,E:4.0) -> ((((A,B),C),D),E)
// probability of picking (A,B) node is 1/(2n-3) = 1/7
// probability of swapping with D is 1/3
// total = 1/21
//probability of picking {D} node is 1/(2n-2) = 1/7
//probability of picking {A,B} is 1/4
// total = 1/28
//total = 1/21 + 1/28 = 7/84 = 0.08333333
System.out.println("Test 2: Backward");
treeMatch = "((((A,B),C),D),E);";
NewickImporter importer = new NewickImporter("(((D:2.0,C:2.0):1.0,(A:1.0,B:1.0):2.0):1.0,E:4.0);");
FlexibleTree tree5_2 = (FlexibleTree) importer.importTree(null);
count = 0;
for (int i = 0; i < reps; i++) {
TreeModel treeModel = new TreeModel("treeModel", tree5_2);
ImportanceSubtreeSwap operator = new ImportanceSubtreeSwap(treeModel, 1.0, 0);
operator.doOperation();
String tree = TreeUtils.newickNoLengths(treeModel);
if (tree.equals(treeMatch)) {
count += 1;
}
}
double p_2 = (double) count / (double) reps;
System.out.println("Number of proposals:\t" + count);
System.out.println("Number of tries:\t" + reps);
System.out.println("Number of ratio:\t" + p_2);
System.out.println("Number of expected ratio:\t" + 0.0833333);
assertExpectation(0.0833333, p_2, reps);
}
public OperatorSchedule getOperatorSchedule(TreeModel treeModel) {
Parameter rootParameter = treeModel.createNodeHeightsParameter(true, false, false);
Parameter internalHeights = treeModel.createNodeHeightsParameter(false, true, false);
ImportanceSubtreeSwap operator = new ImportanceSubtreeSwap(treeModel, 1.0, 1);
ScaleOperator scaleOperator = new ScaleOperator(rootParameter, 0.75, CoercionMode.COERCION_ON, 1.0);
UniformOperator uniformOperator = new UniformOperator(internalHeights, 1.0);
OperatorSchedule schedule = new SimpleOperatorSchedule();
schedule.addOperator(operator);
schedule.addOperator(scaleOperator);
schedule.addOperator(uniformOperator);
return schedule;
}
}