/* * LambertW.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ /* Lambert W function, code by various authors */ /* Ported to Java by Daniel Wilson */ package dr.evomodel.epidemiology; /* Author: G. Jungman */ /* Started with code donated by K. Briggs; added * error estimates, GSL foo, and minor tweaks. * Some Lambert-ology from * [Corless, Gonnet, Hare, and Jeffrey, "On Lambert's W Function".] */ public class LambertW { static public class gsl_sf_result { public double val, err; public gsl_sf_result() { val = err = 0; }; } public enum GSL_RETURN {GSL_SUCCESS, GSL_EMAXITER, GSL_EDOM} ; static double M_E = 2.71828182845904523536028747135266250; static double GSL_DBL_EPSILON = 2.2204460492503131e-16; /* Halley iteration (eqn. 5.12, Corless et al) */ public static GSL_RETURN halley_iteration( double x, double w_initial, int max_iters, gsl_sf_result result ) { double w = w_initial; int i; for(i=0; i<max_iters; i++) { double tol; final double e = Math.exp(w); final double p = w + 1.0; double t = w*e - x; /* printf("FOO: %20.16g %20.16g\n", w, t); */ if (w > 0) { t = (t/p)/e; /* Newton iteration */ } else { t /= e*p - 0.5*(p + 1.0)*t/p; /* Halley iteration */ }; w -= t; tol = 10 * GSL_DBL_EPSILON * Math.max(Math.abs(w), 1.0/(Math.abs(p)*e)); if(Math.abs(t) < tol) { result.val = w; result.err = 2.0*tol; return GSL_RETURN.GSL_SUCCESS; } } /* should never get here */ result.val = w; result.err = Math.abs(w); return GSL_RETURN.GSL_EMAXITER; } static final double[] c = { -1.0, 2.331643981597124203363536062168, -1.812187885639363490240191647568, 1.936631114492359755363277457668, -2.353551201881614516821543561516, 3.066858901050631912893148922704, -4.175335600258177138854984177460, 5.858023729874774148815053846119, -8.401032217523977370984161688514, 12.250753501314460424, -18.100697012472442755, 27.029044799010561650 }; /* series which appears for q near zero; * only the argument is different for the different branches */ public static double series_eval(double r) { final double t_8 = c[8] + r*(c[9] + r*(c[10] + r*c[11])); final double t_5 = c[5] + r*(c[6] + r*(c[7] + r*t_8)); final double t_1 = c[1] + r*(c[2] + r*(c[3] + r*(c[4] + r*t_5))); return c[0] + r*t_1; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ static GSL_RETURN gsl_sf_lambert_W0_e(double x, gsl_sf_result result) { final double one_over_E = 1.0/M_E; final double q = x + one_over_E; if(x == 0.0) { result.val = 0.0; result.err = 0.0; return GSL_RETURN.GSL_SUCCESS; } else if(q < 0.0) { /* Strictly speaking this is an error. But because of the * arithmetic operation connecting x and q, I am a little * lenient in case of some epsilon overshoot. The following * answer is quite accurate in that case. Anyway, we have * to return GSL_EDOM. */ result.val = -1.0; result.err = Math.sqrt(-q); return GSL_RETURN.GSL_EDOM; } else if(q == 0.0) { result.val = -1.0; result.err = GSL_DBL_EPSILON; /* cannot error is zero, maybe q == 0 by "accident" */ return GSL_RETURN.GSL_SUCCESS; } else if(q < 1.0e-03) { /* series near -1/E in sqrt(q) */ final double r = Math.sqrt(q); result.val = series_eval(r); result.err = 2.0 * GSL_DBL_EPSILON * Math.abs(result.val); return GSL_RETURN.GSL_SUCCESS; } else { final int MAX_ITERS = 10; double w; if (x < 1.0) { /* obtain initial approximation from series near x=0; * no need for extra care, since the Halley iteration * converges nicely on this branch */ final double p = Math.sqrt(2.0 * M_E * q); w = -1.0 + p*(1.0 + p*(-1.0/3.0 + p*11.0/72.0)); } else { /* obtain initial approximation from rough asymptotic */ w = Math.log(x); if(x > 3.0) w -= Math.log(w); } return halley_iteration(x, w, MAX_ITERS, result); } } static GSL_RETURN gsl_sf_lambert_Wm1_e(double x, gsl_sf_result result) { if(x > 0.0) { return gsl_sf_lambert_W0_e(x, result); } else if(x == 0.0) { result.val = 0.0; result.err = 0.0; return GSL_RETURN.GSL_SUCCESS; } else { final int MAX_ITERS = 32; final double one_over_E = 1.0/M_E; final double q = x + one_over_E; double w; if (q < 0.0) { /* As in the W0 branch above, return some reasonable answer anyway. */ result.val = -1.0; result.err = Math.sqrt(-q); return GSL_RETURN.GSL_EDOM; } if(x < -1.0e-6) { /* Obtain initial approximation from series about q = 0, * as long as we're not very close to x = 0. * Use full series and try to bail out if q is too small, * since the Halley iteration has bad convergence properties * in finite arithmetic for q very small, because the * increment alternates and p is near zero. */ final double r = -Math.sqrt(q); w = series_eval(r); if(q < 3.0e-3) { /* this approximation is good enough */ result.val = w; result.err = 5.0 * GSL_DBL_EPSILON * Math.abs(w); return GSL_RETURN.GSL_SUCCESS; } } else { /* Obtain initial approximation from asymptotic near zero. */ final double L_1 = Math.log(-x); final double L_2 = Math.log(-L_1); w = L_1 - L_2 + L_2/L_1; } return halley_iteration(x, w, MAX_ITERS, result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ static public double branch0(double x) { gsl_sf_result result = new gsl_sf_result(); GSL_RETURN res = gsl_sf_lambert_W0_e(x, result); if(res==GSL_RETURN.GSL_EMAXITER) { throw new RuntimeException("Too many iterations"); } return result.val; } static public double branchNeg1(double x) { gsl_sf_result result = new gsl_sf_result(); GSL_RETURN res = gsl_sf_lambert_Wm1_e(x, result); if(res==GSL_RETURN.GSL_EMAXITER) { throw new RuntimeException("Too many iterations"); } return result.val; } }