/*
* ExponentialDistribution.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.math.distributions;
import dr.math.UnivariateFunction;
/**
* exponential distribution.
* <p/>
* (Parameter: lambda; mean: 1/lambda; variance: 1/lambda^2)
* <p/>
* The exponential distribution is a special case of the Gamma distribution
* (shape parameter = 1.0, scale = 1/lambda).
*
* @author Alexei Drummond
* @author Korbinian Strimmer
* @version $Id: ExponentialDistribution.java,v 1.5 2005/05/24 20:26:00 rambaut Exp $
*/
public class ExponentialDistribution implements Distribution {
//
// Public stuff
//
/**
* Constructor
*
* @param lambda the rate of the exponential distribution (1/mean)
*/
public ExponentialDistribution(double lambda) {
this.lambda = lambda;
}
public double pdf(double x) {
return pdf(x, lambda);
}
public double logPdf(double x) {
return logPdf(x, lambda);
}
public double cdf(double x) {
return cdf(x, lambda);
}
public double quantile(double y) {
return quantile(y, lambda);
}
public double mean() {
return mean(lambda);
}
public double variance() {
return variance(lambda);
}
public UnivariateFunction getProbabilityDensityFunction() {
return pdfFunction;
}
private UnivariateFunction pdfFunction = new UnivariateFunction() {
public final double evaluate(double x) {
return pdf(x);
}
public final double getLowerBound() {
return 0.0;
}
public final double getUpperBound() {
return Double.POSITIVE_INFINITY;
}
};
/**
* probability density function of the exponential distribution
* (mean = 1/lambda)
*
* @param x argument
* @param lambda parameter of exponential distribution
* @return pdf value
*/
public static double pdf(double x, double lambda) {
if (x < 0) return 0;
return lambda * Math.exp(-lambda * x);
}
/**
* the natural log of the probability density function of the distribution
* (mean = 1/lambda)
*
* @param x argument
* @param lambda parameter of exponential distribution
* @return log pdf value
*/
public static double logPdf(double x, double lambda) {
if (x < 0) return Double.NEGATIVE_INFINITY;
return Math.log(lambda) - (lambda * x);
}
/**
* cumulative density function of the exponential distribution
*
* @param x argument
* @param lambda parameter of exponential distribution
* @return cdf value
*/
public static double cdf(double x, double lambda) {
return 1.0 - Math.exp(-lambda * x);
}
/**
* quantile (inverse cumulative density function) of the exponential distribution
*
* @param y argument
* @param lambda parameter of exponential distribution
* @return icdf value
*/
public static double quantile(double y, double lambda) {
return -(1.0 / lambda) * Math.log(1.0 - y);
}
/**
* mean of the exponential distribution
*
* @param lambda parameter of exponential distribution
* @return mean
*/
public static double mean(double lambda) {
return 1.0 / (lambda);
}
/**
* variance of the exponential distribution
*
* @param lambda parameter of exponential distribution
* @return variance
*/
public static double variance(double lambda) {
return 1.0 / (lambda * lambda);
}
// the rate parameter of this exponential distribution (1/mean)
double lambda;
}