/*
* ExponentialProductSufficientStatisticsLikelihood.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.evomodel.coalescent;
import java.util.List;
import dr.evolution.coalescent.IntervalType;
import dr.evolution.tree.Tree;
import dr.evomodel.coalescent.OldAbstractCoalescentLikelihood.CoalescentEventType;
import dr.evomodel.tree.TreeModel;
import dr.inference.model.Likelihood;
/**
* Calculates a product of exponential densities and exponential tail probabilities.
*
* @author Guy Baele
*/
public class ExponentialProductSufficientStatisticsLikelihood extends OldAbstractCoalescentLikelihood {
//not used at the moment
public final static boolean FIXED_TREE = false;
private TreeModel treeModel;
private double[] posteriorMeans;
protected int fieldLength;
protected double[] coalescentIntervals;
protected double[] sufficientStatistics;
//make sure to use in combination with coalescentEventsStatistic
public ExponentialProductSufficientStatisticsLikelihood(TreeModel treeModel, double[] posteriorMeans) {
super("ExponentialProductSufficientStatisticsLikelihood");
this.treeModel = treeModel;
this.posteriorMeans = posteriorMeans;
tree = treeModel;
addModel((TreeModel) tree);
this.fieldLength = posteriorMeans.length;
wrapSetupIntervals();
coalescentIntervals = new double[fieldLength];
sufficientStatistics = new double[fieldLength];
}
protected void wrapSetupIntervals() {
setupIntervals();
}
/*protected void setTree(List<Tree> treeList) {
if (treeList.size() != 1) {
throw new RuntimeException("GMRFSkyrideLikelihood only implemented for one tree");
}
this.tree = treeList.get(0);
this.treesSet = null;
if (tree instanceof TreeModel) {
addModel((TreeModel) tree);
}
}*/
protected void setupSufficientStatistics() {
int index = 0;
double length = 0;
double weight = 0;
for (int i = 0; i < getIntervalCount(); i++) {
//System.err.println(getInterval(i));
length += getInterval(i);
weight += getInterval(i) * getLineageCount(i) * (getLineageCount(i) - 1);
if (getIntervalType(i) == CoalescentEventType.COALESCENT) {
coalescentIntervals[index] = length;
sufficientStatistics[index] = weight / 2.0;
index++;
length = 0;
weight = 0;
}
}
}
private void makeIntervalsKnown() {
if (!intervalsKnown) {
wrapSetupIntervals();
intervalsKnown = true;
}
}
public double calculateLogLikelihood() {
tree = treeModel;
makeIntervalsKnown();
setupSufficientStatistics();
// Matrix operations taken from block update sampler to calculate data likelihood and field prior
double currentLike = 0;
double[] currentGamma = posteriorMeans;
for (int i = 0; i < fieldLength; i++) {
//System.err.println(currentGamma[i] + " " + sufficientStatistics[i] + " " + (-currentGamma[i] - sufficientStatistics[i] * Math.exp(-currentGamma[i])));
currentLike += -currentGamma[i] - sufficientStatistics[i] * Math.exp(-currentGamma[i]);
}
//System.err.println("currentLike = " + currentLike + "\n");
return currentLike;
}
/**
* Overridden to always return false.
*/
protected boolean getLikelihoodKnown() {
return false;
}
}