/*
* BetaDistributionModel.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.inference.distribution;
import dr.inference.model.AbstractModel;
import dr.inference.model.Model;
import dr.inference.model.Parameter;
import dr.inference.model.Variable;
import dr.math.UnivariateFunction;
import dr.math.distributions.BetaDistribution;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
/**
* A class that acts as a model for beta distributed data.
*
* @author Marc A. Suchard
*/
public class BetaDistributionModel extends AbstractModel implements ParametricDistributionModel {
public static final String BETA_DISTRIBUTION_MODEL = "betaDistributionModel";
public BetaDistributionModel(Variable<Double> alpha, Variable<Double> beta) {
this(alpha, beta, 0.0, 1.0);
}
/**
* Constructor.
*/
public BetaDistributionModel(Variable<Double> alpha, Variable<Double> beta, double offset, double length) {
super(BETA_DISTRIBUTION_MODEL);
this.alpha = alpha;
this.beta = beta;
this.length = length;
this.offset = offset;
addVariable(alpha);
alpha.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, 0.0, 1));
addVariable(beta);
beta.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, 0.0, 1));
recomputeBetaDistribution();
}
// *****************************************************************
// Interface Distribution
// *****************************************************************
public double pdf(double x) {
double xScaled = getXScaled(x);
if (xScaled < 0.0 || xScaled > 1.0) return 0.0;
return betaDistribution.pdf(xScaled);
}
public double logPdf(double x) {
double xScaled = getXScaled(x);
if (xScaled < 0.0 || xScaled > 1.0) return Double.NEGATIVE_INFINITY;
return betaDistribution.logPdf(xScaled);
}
public double cdf(double x) {
if (x < offset) return 0.0;
return betaDistribution.cdf(getXScaled(x));
}
public double quantile(double y) {
return betaDistribution.quantile(getXScaled(y)) * length + offset;
}
public double mean() {
return betaDistribution.mean() * length + offset;
}
public double variance() {
return betaDistribution.variance() * length * length;
}
public final UnivariateFunction getProbabilityDensityFunction() {
return pdfFunction;
}
private final UnivariateFunction pdfFunction = new UnivariateFunction() {
public final double evaluate(double x) {
double xScale = (x - offset) / length;
return pdf(xScale);
}
public final double getLowerBound() {
return offset;
}
public final double getUpperBound() {
return offset + length;
}
};
// *****************************************************************
// Interface DensityModel
// *****************************************************************
@Override
public double logPdf(double[] x) {
return logPdf(x[0]);
}
@Override
public Variable<Double> getLocationVariable() {
throw new UnsupportedOperationException("Not implemented");
}
// *****************************************************************
// Interface Model
// *****************************************************************
public void handleModelChangedEvent(Model model, Object object, int index) {
// no intermediates need to be recalculated...
}
public void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) {
recomputeBetaDistribution();
}
protected void storeState() {
storedBetaDistribution = betaDistribution;
}
protected void restoreState() {
betaDistribution = storedBetaDistribution;
}
protected void acceptState() {
} // no additional state needs accepting
// **************************************************************
// XMLElement IMPLEMENTATION
// **************************************************************
public Element createElement(Document document) {
throw new RuntimeException("Not implemented!");
}
// **************************************************************
// Private methods
// **************************************************************
private void recomputeBetaDistribution() {
betaDistribution = new BetaDistribution(alpha.getValue(0), beta.getValue(0));
}
private double getXScaled(double x) {
return (x - offset) / length;
}
// **************************************************************
// Private instance variables
// **************************************************************
private Variable<Double> alpha = null;
private Variable<Double> beta = null;
private double offset = 0.0;
private double length = 0.0;
private BetaDistribution betaDistribution = null;
private BetaDistribution storedBetaDistribution = null;
}