/* * NucleotideLikelihoodCore.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.oldevomodel.treelikelihood; /** * NucleotideLikelihoodCore - An implementation of LikelihoodCore optimised * for nucleotides. * * @version $Id: NucleotideLikelihoodCore.java,v 1.12 2006/08/31 14:57:24 rambaut Exp $ * * @author Andrew Rambaut * @author Alexei Drummond */ @Deprecated // Switching to BEAGLE public class NucleotideLikelihoodCore extends AbstractLikelihoodCore { /** * Constructor */ public NucleotideLikelihoodCore() { super(4); } /** * Calculates partial likelihoods at a node when both children have states. */ protected void calculateStatesStatesPruning(int[] states1, double[] matrices1, int[] states2, double[] matrices2, double[] partials3) { int v = 0; int u = 0; for (int j = 0; j < matrixCount; j++) { for (int k = 0; k < patternCount; k++) { int w = u; int state1 = states1[k]; int state2 = states2[k]; if (state1 < 4 && state2 < 4) { partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 4; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 4; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 4; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 4; } else if (state1 < 4) { // child 2 has a gap or unknown state so don't use it partials3[v] = matrices1[w + state1]; v++; w += 4; partials3[v] = matrices1[w + state1]; v++; w += 4; partials3[v] = matrices1[w + state1]; v++; w += 4; partials3[v] = matrices1[w + state1]; v++; w += 4; } else if (state2 < 4) { // child 2 has a gap or unknown state so don't use it partials3[v] = matrices2[w + state2]; v++; w += 4; partials3[v] = matrices2[w + state2]; v++; w += 4; partials3[v] = matrices2[w + state2]; v++; w += 4; partials3[v] = matrices2[w + state2]; v++; w += 4; } else { // both children have a gap or unknown state so set partials to 1 partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; } } u += matrixSize; } } /** * Calculates partial likelihoods at a node when one child has states and one has partials. */ protected void calculateStatesPartialsPruning( int[] states1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3) { int u = 0; int v = 0; int w = 0; for (int l = 0; l < matrixCount; l++) { for (int k = 0; k < patternCount; k++) { int state1 = states1[k]; if (state1 < 4) { double sum; sum = matrices2[w] * partials2[v]; sum += matrices2[w + 1] * partials2[v + 1]; sum += matrices2[w + 2] * partials2[v + 2]; sum += matrices2[w + 3] * partials2[v + 3]; partials3[u] = matrices1[w + state1] * sum; u++; sum = matrices2[w + 4] * partials2[v]; sum += matrices2[w + 5] * partials2[v + 1]; sum += matrices2[w + 6] * partials2[v + 2]; sum += matrices2[w + 7] * partials2[v + 3]; partials3[u] = matrices1[w + 4 + state1] * sum; u++; sum = matrices2[w + 8] * partials2[v]; sum += matrices2[w + 9] * partials2[v + 1]; sum += matrices2[w + 10] * partials2[v + 2]; sum += matrices2[w + 11] * partials2[v + 3]; partials3[u] = matrices1[w + 8 + state1] * sum; u++; sum = matrices2[w + 12] * partials2[v]; sum += matrices2[w + 13] * partials2[v + 1]; sum += matrices2[w + 14] * partials2[v + 2]; sum += matrices2[w + 15] * partials2[v + 3]; partials3[u] = matrices1[w + 12 + state1] * sum; u++; v += 4; } else { // Child 1 has a gap or unknown state so don't use it double sum; sum = matrices2[w] * partials2[v]; sum += matrices2[w + 1] * partials2[v + 1]; sum += matrices2[w + 2] * partials2[v + 2]; sum += matrices2[w + 3] * partials2[v + 3]; partials3[u] = sum; u++; sum = matrices2[w + 4] * partials2[v]; sum += matrices2[w + 5] * partials2[v + 1]; sum += matrices2[w + 6] * partials2[v + 2]; sum += matrices2[w + 7] * partials2[v + 3]; partials3[u] = sum; u++; sum = matrices2[w + 8] * partials2[v]; sum += matrices2[w + 9] * partials2[v + 1]; sum += matrices2[w + 10] * partials2[v + 2]; sum += matrices2[w + 11] * partials2[v + 3]; partials3[u] = sum; u++; sum = matrices2[w + 12] * partials2[v]; sum += matrices2[w + 13] * partials2[v + 1]; sum += matrices2[w + 14] * partials2[v + 2]; sum += matrices2[w + 15] * partials2[v + 3]; partials3[u] = sum; u++; v += 4; } } w += matrixSize; } } /** * Calculates partial likelihoods at a node when both children have partials. */ protected void calculatePartialsPartialsPruning(double[] partials1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3) { double sum1, sum2; int u = 0; int v = 0; int w = 0; for (int l = 0; l < matrixCount; l++) { for (int k = 0; k < patternCount; k++) { sum1 = matrices1[w] * partials1[v]; sum2 = matrices2[w] * partials2[v]; sum1 += matrices1[w + 1] * partials1[v + 1]; sum2 += matrices2[w + 1] * partials2[v + 1]; sum1 += matrices1[w + 2] * partials1[v + 2]; sum2 += matrices2[w + 2] * partials2[v + 2]; sum1 += matrices1[w + 3] * partials1[v + 3]; sum2 += matrices2[w + 3] * partials2[v + 3]; partials3[u] = sum1 * sum2; u++; sum1 = matrices1[w + 4] * partials1[v]; sum2 = matrices2[w + 4] * partials2[v]; sum1 += matrices1[w + 5] * partials1[v + 1]; sum2 += matrices2[w + 5] * partials2[v + 1]; sum1 += matrices1[w + 6] * partials1[v + 2]; sum2 += matrices2[w + 6] * partials2[v + 2]; sum1 += matrices1[w + 7] * partials1[v + 3]; sum2 += matrices2[w + 7] * partials2[v + 3]; partials3[u] = sum1 * sum2; u++; sum1 = matrices1[w + 8] * partials1[v]; sum2 = matrices2[w + 8] * partials2[v]; sum1 += matrices1[w + 9] * partials1[v + 1]; sum2 += matrices2[w + 9] * partials2[v + 1]; sum1 += matrices1[w + 10] * partials1[v + 2]; sum2 += matrices2[w + 10] * partials2[v + 2]; sum1 += matrices1[w + 11] * partials1[v + 3]; sum2 += matrices2[w + 11] * partials2[v + 3]; partials3[u] = sum1 * sum2; u++; sum1 = matrices1[w + 12] * partials1[v]; sum2 = matrices2[w + 12] * partials2[v]; sum1 += matrices1[w + 13] * partials1[v + 1]; sum2 += matrices2[w + 13] * partials2[v + 1]; sum1 += matrices1[w + 14] * partials1[v + 2]; sum2 += matrices2[w + 14] * partials2[v + 2]; sum1 += matrices1[w + 15] * partials1[v + 3]; sum2 += matrices2[w + 15] * partials2[v + 3]; partials3[u] = sum1 * sum2; u++; v += 4; } w += matrixSize; } } /** * Calculates partial likelihoods at a node when both children have states. */ protected void calculateStatesStatesPruning(int[] states1, double[] matrices1, int[] states2, double[] matrices2, double[] partials3, int[] matrixMap) { throw new RuntimeException("calculateStatesStatesPruning not implemented using matrixMap"); } /** * Calculates partial likelihoods at a node when one child has states and one has partials. */ protected void calculateStatesPartialsPruning( int[] states1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3, int[] matrixMap) { throw new RuntimeException("calculateStatesStatesPruning not implemented using matrixMap"); } /** * Calculates partial likelihoods at a node when both children have partials. */ protected void calculatePartialsPartialsPruning(double[] partials1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3, int[] matrixMap) { throw new RuntimeException("calculateStatesStatesPruning not implemented using matrixMap"); } /** * Integrates partials across categories. * @param inPartials the partials at the node to be integrated * @param proportions the proportions of sites in each category * @param outPartials an array into which the integrated partials will go */ public void calculateIntegratePartials(double[] inPartials, double[] proportions, double[] outPartials) { int u = 0; int v = 0; for (int k = 0; k < patternCount; k++) { outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; } for (int j = 1; j < matrixCount; j++) { u = 0; for (int k = 0; k < patternCount; k++) { outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; } } } /** * Calculates site likelihoods at a node. * @param partials the partials used to calculate the likelihoods * @param frequencies an array of state frequencies * @param outLogLikelihoods an array into which the likelihoods will go */ public void calculateLogLikelihoods(double[] partials, double[] frequencies, double[] outLogLikelihoods) { int v = 0; for (int k = 0; k < patternCount; k++) { double sum = frequencies[0] * partials[v]; v++; sum += frequencies[1] * partials[v]; v++; sum += frequencies[2] * partials[v]; v++; sum += frequencies[3] * partials[v]; v++; outLogLikelihoods[k] = Math.log(sum) + getLogScalingFactor(k); } } }