/*
* ExponentialGrowth.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.evolution.coalescent;
/**
* This class models an exponentially growing (or shrinking) population
* (Parameters: N0=present-day population size; r=growth rate).
* This model is nested with the constant-population size model (r=0).
*
* @version $Id: ExponentialGrowth.java,v 1.7 2005/05/24 20:25:56 rambaut Exp $
*
* @author Alexei Drummond
* @author Andrew Rambaut
*/
public class ExponentialGrowth extends ConstantPopulation {
/**
* Construct demographic model with default settings
* @param units of time
*/
public ExponentialGrowth(Type units) {
super(units);
}
/**
* @return growth rate.
*/
public final double getGrowthRate() { return r; }
/**
* sets growth rate to r.
* @param r
*/
public void setGrowthRate(double r) { this.r = r; }
/**
* An alternative parameterization of this model. This
* function sets growth rate for a given doubling time.
* @param doublingTime
*/
public void setDoublingTime(double doublingTime) {
setGrowthRate( Math.log(2) / doublingTime );
}
// Implementation of abstract methods
public double getDemographic(double t) {
double r = getGrowthRate();
if (r == 0) {
return getN0();
} else {
return getN0() * Math.exp(-t * r);
}
}
/**
* Calculates the integral 1/N(x) dx between start and finish.
*/
@Override
public double getIntegral(double start, double finish) {
double r = getGrowthRate();
if (r == 0.0) {
return (finish - start)/getN0();
} else {
return (Math.exp(finish*r) - Math.exp(start*r))/getN0()/r;
}
}
public double getIntensity(double t)
{
double r = getGrowthRate();
if (r == 0.0) {
return t/getN0();
} else {
return (Math.exp(t*r)-1.0)/getN0()/r;
}
}
public double getInverseIntensity(double x) {
double r = getGrowthRate();
if (r == 0.0) {
return getN0()*x;
} else {
return Math.log(1.0+getN0()*x*r)/r;
}
}
public int getNumArguments() {
return 2;
}
public String getArgumentName(int n) {
if (n == 0) {
return "N0";
} else {
return "r";
}
}
public double getArgument(int n) {
if (n == 0) {
return getN0();
} else {
return getGrowthRate();
}
}
public void setArgument(int n, double value) {
if (n == 0) {
setN0(value);
} else {
setGrowthRate(value);
}
}
public double getLowerBound(int n) {
return 0.0;
}
public double getUpperBound(int n) {
return Double.POSITIVE_INFINITY;
}
public DemographicFunction getCopy() {
ExponentialGrowth df = new ExponentialGrowth(getUnits());
df.setN0(getN0());
df.r = r;
return df;
}
//
// private stuff
//
private double r;
}