/*
* NumericalDerivative.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.math;
/**
* approximates numerically the first and second derivatives of a
* function of a single variable and approximates gradient and
* diagonal of Hessian for multivariate functions
*
* Known bugs and limitations:
* - the sparse number of function evaluations used can potentially
*
* @author Korbinian Strimmer
*/
public class NumericalDerivative
{
//
// Public stuff
//
/**
* determine first derivative
*
* @param f univariate function
* @param x argument
*
* @return first derivate at x
*/
public static double firstDerivative(UnivariateFunction f, double x)
{
double h = MachineAccuracy.SQRT_EPSILON*(Math.abs(x) + 1.0);
// Centered first derivative
return (f.evaluate(x + h) - f.evaluate(x - h))/(2.0*h);
}
/**
* determine second derivative
*
* @param f univariate function
* @param x argument
*
* @return second derivate at x
*/
public static double secondDerivative(UnivariateFunction f, double x)
{
double h = MachineAccuracy.SQRT_SQRT_EPSILON*(Math.abs(x) + 1.0);
// Centered second derivative
return (f.evaluate(x + h) - 2.0*f.evaluate(x) + f.evaluate(x - h))/(h*h);
}
/**
* determine gradient
*
* @param f multivariate function
* @param x argument vector
*
* @return gradient at x
*/
public static double[] gradient(MultivariateFunction f, double[] x)
{
double[] result = new double[x.length];
gradient(f, x, result);
return result;
}
/**
* determine gradient
*
* @param f multivariate function
* @param x argument vector
* @param grad vector for gradient
*/
public static void gradient(MultivariateFunction f, double[] x, double[] grad)
{
for (int i = 0; i < f.getNumArguments(); i++)
{
double h = MachineAccuracy.SQRT_EPSILON*(Math.abs(x[i]) + 1.0);
double oldx = x[i];
x[i] = oldx + h;
double fxplus = f.evaluate(x);
x[i] = oldx - h;
double fxminus = f.evaluate(x);
x[i] = oldx;
// Centered first derivative
grad[i] = (fxplus-fxminus)/(2.0*h);
}
}
/**
* determine diagonal of Hessian
*
* @param f multivariate function
* @param x argument vector
*
* @return vector with diagonal entries of Hessian
*/
public static double[] diagonalHessian(MultivariateFunction f, double[] x)
{
int len = f.getNumArguments();
double[] result = new double[len];
for (int i = 0; i < len; i++)
{
double h = MachineAccuracy.SQRT_SQRT_EPSILON*(Math.abs(x[i]) + 1.0);
double oldx = x[i];
x[i] = oldx + h;
double fxplus = f.evaluate(x);
x[i] = oldx - h;
double fxminus = f.evaluate(x);
x[i] = oldx;
double fx = f.evaluate(x);
// Centered second derivative
result[i] = (fxplus - 2.0*fx + fxminus)/(h*h);
}
return result;
}
}