/* * MVOUCovarianceOperatorParser.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.inferencexml.operators; import dr.inference.model.MatrixParameter; import dr.inference.operators.CoercableMCMCOperator; import dr.inference.operators.CoercionMode; import dr.inference.operators.MCMCOperator; import dr.inference.operators.MVOUCovarianceOperator; import dr.xml.*; /** * */ public class MVOUCovarianceOperatorParser extends AbstractXMLObjectParser { public static final String MVOU_OPERATOR = "mvouOperator"; public static final String MIXING_FACTOR = "mixingFactor"; public static final String VARIANCE_MATRIX = "varMatrix"; public static final String PRIOR_DF = "priorDf"; public String getParserName() { return MVOU_OPERATOR; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { CoercionMode mode = CoercionMode.parseMode(xo); double weight = xo.getDoubleAttribute(MCMCOperator.WEIGHT); double mixingFactor = xo.getDoubleAttribute(MIXING_FACTOR); int priorDf = xo.getIntegerAttribute(PRIOR_DF); if (mixingFactor <= 0.0 || mixingFactor >= 1.0) { throw new XMLParseException("mixingFactor must be greater than 0.0 and less thatn 1.0"); } // Parameter parameter = (Parameter) xo.getChild(Parameter.class); // XMLObject cxo = (XMLObject) xo.getChild(VARIANCE_MATRIX); MatrixParameter varMatrix = (MatrixParameter) xo.getChild(MatrixParameter.class); // Make sure varMatrix is square and dim(varMatrix) = dim(parameter) if (varMatrix.getColumnDimension() != varMatrix.getRowDimension()) throw new XMLParseException("The variance matrix is not square"); // if (varMatrix.getColumnDimension() != parameter.getDimension()) // throw new XMLParseException("The parameter and variance matrix have differing dimensions"); return new MVOUCovarianceOperator(mixingFactor, varMatrix, priorDf, weight, mode); } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public String getParserDescription() { return "This element returns junk."; } public Class getReturnType() { return MVOUCovarianceOperator.class; } public XMLSyntaxRule[] getSyntaxRules() { return rules; } private XMLSyntaxRule[] rules = new XMLSyntaxRule[]{ AttributeRule.newDoubleRule(MIXING_FACTOR), AttributeRule.newIntegerRule(PRIOR_DF), AttributeRule.newDoubleRule(MCMCOperator.WEIGHT), AttributeRule.newBooleanRule(CoercableMCMCOperator.AUTO_OPTIMIZE, true), // new ElementRule(Parameter.class), // new ElementRule(VARIANCE_MATRIX, // new XMLSyntaxRule[]{new ElementRule(MatrixParameter.class)}), new ElementRule(MatrixParameter.class) }; }