/*
* MVOUCovarianceOperatorParser.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.inferencexml.operators;
import dr.inference.model.MatrixParameter;
import dr.inference.operators.CoercableMCMCOperator;
import dr.inference.operators.CoercionMode;
import dr.inference.operators.MCMCOperator;
import dr.inference.operators.MVOUCovarianceOperator;
import dr.xml.*;
/**
*
*/
public class MVOUCovarianceOperatorParser extends AbstractXMLObjectParser {
public static final String MVOU_OPERATOR = "mvouOperator";
public static final String MIXING_FACTOR = "mixingFactor";
public static final String VARIANCE_MATRIX = "varMatrix";
public static final String PRIOR_DF = "priorDf";
public String getParserName() {
return MVOU_OPERATOR;
}
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
CoercionMode mode = CoercionMode.parseMode(xo);
double weight = xo.getDoubleAttribute(MCMCOperator.WEIGHT);
double mixingFactor = xo.getDoubleAttribute(MIXING_FACTOR);
int priorDf = xo.getIntegerAttribute(PRIOR_DF);
if (mixingFactor <= 0.0 || mixingFactor >= 1.0) {
throw new XMLParseException("mixingFactor must be greater than 0.0 and less thatn 1.0");
}
// Parameter parameter = (Parameter) xo.getChild(Parameter.class);
// XMLObject cxo = (XMLObject) xo.getChild(VARIANCE_MATRIX);
MatrixParameter varMatrix = (MatrixParameter) xo.getChild(MatrixParameter.class);
// Make sure varMatrix is square and dim(varMatrix) = dim(parameter)
if (varMatrix.getColumnDimension() != varMatrix.getRowDimension())
throw new XMLParseException("The variance matrix is not square");
// if (varMatrix.getColumnDimension() != parameter.getDimension())
// throw new XMLParseException("The parameter and variance matrix have differing dimensions");
return new MVOUCovarianceOperator(mixingFactor, varMatrix, priorDf, weight, mode);
}
//************************************************************************
// AbstractXMLObjectParser implementation
//************************************************************************
public String getParserDescription() {
return "This element returns junk.";
}
public Class getReturnType() {
return MVOUCovarianceOperator.class;
}
public XMLSyntaxRule[] getSyntaxRules() {
return rules;
}
private XMLSyntaxRule[] rules = new XMLSyntaxRule[]{
AttributeRule.newDoubleRule(MIXING_FACTOR),
AttributeRule.newIntegerRule(PRIOR_DF),
AttributeRule.newDoubleRule(MCMCOperator.WEIGHT),
AttributeRule.newBooleanRule(CoercableMCMCOperator.AUTO_OPTIMIZE, true),
// new ElementRule(Parameter.class),
// new ElementRule(VARIANCE_MATRIX,
// new XMLSyntaxRule[]{new ElementRule(MatrixParameter.class)}),
new ElementRule(MatrixParameter.class)
};
}