/* * GeneralLikelihoodCore.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.oldevomodel.treelikelihood; /** * GeneralLikelihoodCore - An implementation of LikelihoodCore for any data * * @version $Id: GeneralLikelihoodCore.java,v 1.28 2006/08/31 14:57:24 rambaut Exp $ * * @author Andrew Rambaut */ @Deprecated // Switching to BEAGLE public class GeneralLikelihoodCore extends AbstractLikelihoodCore { /** * Constructor * * @param stateCount number of states */ public GeneralLikelihoodCore(int stateCount) { super(stateCount); } /** * Calculates partial likelihoods at a node when both children have states. */ protected void calculateStatesStatesPruning(int[] states1, double[] matrices1, int[] states2, double[] matrices2, double[] partials3) { int v = 0; for (int l = 0; l < matrixCount; l++) { for (int k = 0; k < patternCount; k++) { int state1 = states1[k]; int state2 = states2[k]; int w = l * matrixSize; if (state1 < stateCount && state2 < stateCount) { for (int i = 0; i < stateCount; i++) { partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += stateCount; } } else if (state1 < stateCount) { // child 2 has a gap or unknown state so treat it as unknown for (int i = 0; i < stateCount; i++) { partials3[v] = matrices1[w + state1]; v++; w += stateCount; } } else if (state2 < stateCount) { // child 2 has a gap or unknown state so treat it as unknown for (int i = 0; i < stateCount; i++) { partials3[v] = matrices2[w + state2]; v++; w += stateCount; } } else { // both children have a gap or unknown state so set partials to 1 for (int j = 0; j < stateCount; j++) { partials3[v] = 1.0; v++; } } } } } /** * Calculates partial likelihoods at a node when one child has states and one has partials. */ protected void calculateStatesPartialsPruning( int[] states1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3) { double sum, tmp; int u = 0; int v = 0; for (int l = 0; l < matrixCount; l++) { for (int k = 0; k < patternCount; k++) { int state1 = states1[k]; int w = l * matrixSize; if (state1 < stateCount) { for (int i = 0; i < stateCount; i++) { tmp = matrices1[w + state1]; sum = 0.0; for (int j = 0; j < stateCount; j++) { sum += matrices2[w] * partials2[v + j]; w++; } partials3[u] = tmp * sum; u++; } v += stateCount; } else { // Child 1 has a gap or unknown state so don't use it for (int i = 0; i < stateCount; i++) { sum = 0.0; for (int j = 0; j < stateCount; j++) { sum += matrices2[w] * partials2[v + j]; w++; } partials3[u] = sum; u++; } v += stateCount; } } } } /** * Calculates partial likelihoods at a node when both children have partials. */ protected void calculatePartialsPartialsPruning(double[] partials1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3) { double sum1, sum2; int u = 0; int v = 0; for (int l = 0; l < matrixCount; l++) { for (int k = 0; k < patternCount; k++) { int w = l * matrixSize; for (int i = 0; i < stateCount; i++) { sum1 = sum2 = 0.0; for (int j = 0; j < stateCount; j++) { sum1 += matrices1[w] * partials1[v + j]; sum2 += matrices2[w] * partials2[v + j]; w++; } partials3[u] = sum1 * sum2; u++; } v += stateCount; } } } /** * Calculates partial likelihoods at a node when both children have states. */ protected void calculateStatesStatesPruning(int[] states1, double[] matrices1, int[] states2, double[] matrices2, double[] partials3, int[] matrixMap) { int v = 0; for (int k = 0; k < patternCount; k++) { int state1 = states1[k]; int state2 = states2[k]; int w = matrixMap[k] * matrixSize; if (state1 < stateCount && state2 < stateCount) { for (int i = 0; i < stateCount; i++) { partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += stateCount; } } else if (state1 < stateCount) { // child 2 has a gap or unknown state so treat it as unknown for (int i = 0; i < stateCount; i++) { partials3[v] = matrices1[w + state1]; v++; w += stateCount; } } else if (state2 < stateCount) { // child 2 has a gap or unknown state so treat it as unknown for (int i = 0; i < stateCount; i++) { partials3[v] = matrices2[w + state2]; v++; w += stateCount; } } else { // both children have a gap or unknown state so set partials to 1 for (int j = 0; j < stateCount; j++) { partials3[v] = 1.0; v++; } } } } /** * Calculates partial likelihoods at a node when one child has states and one has partials. */ protected void calculateStatesPartialsPruning( int[] states1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3, int[] matrixMap) { double sum, tmp; int u = 0; int v = 0; for (int k = 0; k < patternCount; k++) { int state1 = states1[k]; int w = matrixMap[k] * matrixSize; if (state1 < stateCount) { for (int i = 0; i < stateCount; i++) { tmp = matrices1[w + state1]; sum = 0.0; for (int j = 0; j < stateCount; j++) { sum += matrices2[w] * partials2[v + j]; w++; } partials3[u] = tmp * sum; u++; } v += stateCount; } else { // Child 1 has a gap or unknown state so don't use it for (int i = 0; i < stateCount; i++) { sum = 0.0; for (int j = 0; j < stateCount; j++) { sum += matrices2[w] * partials2[v + j]; w++; } partials3[u] = sum; u++; } v += stateCount; } } } /** * Calculates partial likelihoods at a node when both children have partials. */ protected void calculatePartialsPartialsPruning(double[] partials1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3, int[] matrixMap) { double sum1, sum2; int u = 0; int v = 0; for (int k = 0; k < patternCount; k++) { int w = matrixMap[k] * matrixSize; for (int i = 0; i < stateCount; i++) { sum1 = sum2 = 0.0; for (int j = 0; j < stateCount; j++) { sum1 += matrices1[w] * partials1[v + j]; sum2 += matrices2[w] * partials2[v + j]; w++; } partials3[u] = sum1 * sum2; u++; } v += stateCount; } } /** * Integrates partials across categories. * @param inPartials the array of partials to be integrated * @param proportions the proportions of sites in each category * @param outPartials an array into which the partials will go */ protected void calculateIntegratePartials(double[] inPartials, double[] proportions, double[] outPartials) { int u = 0; int v = 0; for (int k = 0; k < patternCount; k++) { for (int i = 0; i < stateCount; i++) { outPartials[u] = inPartials[v] * proportions[0]; u++; v++; } } for (int l = 1; l < matrixCount; l++) { u = 0; for (int k = 0; k < patternCount; k++) { for (int i = 0; i < stateCount; i++) { outPartials[u] += inPartials[v] * proportions[l]; u++; v++; } } } } /** * Calculates patten log likelihoods at a node. * @param partials the partials used to calculate the likelihoods * @param frequencies an array of state frequencies * @param outLogLikelihoods an array into which the likelihoods will go */ public void calculateLogLikelihoods(double[] partials, double[] frequencies, double[] outLogLikelihoods) { int v = 0; for (int k = 0; k < patternCount; k++) { double sum = 0.0; for (int i = 0; i < stateCount; i++) { sum += frequencies[i] * partials[v]; v++; } outLogLikelihoods[k] = Math.log(sum) + getLogScalingFactor(k); } } }