/*
* RegressionGibbsPrecisionOperator.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.inference.operators;
import dr.inference.distribution.*;
import dr.inference.model.Parameter;
import dr.math.distributions.GammaDistribution;
import dr.math.distributions.Distribution;
import dr.math.MathUtils;
import dr.xml.*;
/**
* @author Marc Suchard
*/
public class RegressionGibbsPrecisionOperator extends SimpleMCMCOperator implements GibbsOperator {
public static final String GIBBS_OPERATOR = "regressionGibbsPrecisionOperator";
private LinearRegression linearModel;
private Parameter precision;
private int dim;
private int N;
private int[] scaleDesign;
private Distribution prior;
public RegressionGibbsPrecisionOperator(LinearRegression linearModel, Parameter precision, Distribution prior) {
super();
if (!(prior instanceof GammaDistribution || prior instanceof GammaDistributionModel))
throw new RuntimeException("Precision prior must be Gamma");
this.prior = prior;
this.linearModel = linearModel;
this.precision = precision;
this.dim = precision.getDimension();
scaleDesign = linearModel.getScaleDesign();
N = linearModel.getDependentVariable().getDimension();
}
public int getStepCount() {
return 1;
}
public double doOperation() {
double[] Y = linearModel.getTransformedDependentParameter();
double[] xBeta = linearModel.getXBeta();
final double priorMean = prior.mean();
final double priorVariance = prior.variance();
double priorRate;
double priorShape;
if (priorMean == 0) {
priorRate = 0;
priorShape = -0.5; // Uninformative prior
} else {
priorRate = priorMean / priorVariance;
priorShape = priorMean * priorRate;
}
for (int k = 0; k < dim; k++) { // Do draw for precision[k]
// Calculate weighted sum-of-squares
double SSE = 0;
int n = 0;
for(int i=0; i<N; i++) {
if(scaleDesign[i] == k) {
SSE += (Y[i] - xBeta[i])*(Y[i] - xBeta[i]);
n++;
}
}
final double shape = priorShape + n / 2.0;
final double rate = priorRate + 0.5 * SSE;
final double draw = MathUtils.nextGamma(shape, rate); // Gamma( \alpha + n/2 , \beta + (1/2)*SSE )
precision.setParameterValue(k, draw);
}
return 0;
}
public String getPerformanceSuggestion() {
return null;
}
public String getOperatorName() {
return GIBBS_OPERATOR;
}
public static XMLObjectParser PARSER = new AbstractXMLObjectParser() {
public String getParserName() {
return GIBBS_OPERATOR;
}
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
double weight = xo.getDoubleAttribute(WEIGHT);
LinearRegression linearModel = (LinearRegression) xo.getChild(LinearRegression.class);
Parameter precision = (Parameter) xo.getChild(Parameter.class);
DistributionLikelihood prior = (DistributionLikelihood) xo.getChild(DistributionLikelihood.class);
if (!((prior.getDistribution() instanceof GammaDistribution) ||
(prior.getDistribution() instanceof GammaDistributionModel)
))
throw new XMLParseException("Gibbs operator assumes normal-gamma model");
RegressionGibbsPrecisionOperator operator = new RegressionGibbsPrecisionOperator(linearModel,precision,prior.getDistribution());
operator.setWeight(weight);
return operator;
}
//************************************************************************
// AbstractXMLObjectParser implementation
//************************************************************************
public String getParserDescription() {
return "This element returns a multivariate Gibbs operator on an internal node trait.";
}
public Class getReturnType() {
return MCMCOperator.class;
}
public XMLSyntaxRule[] getSyntaxRules() {
return rules;
}
private XMLSyntaxRule[] rules = new XMLSyntaxRule[]{
AttributeRule.newDoubleRule(WEIGHT),
new ElementRule(Parameter.class),
new ElementRule(DistributionLikelihood.class),
new ElementRule(LinearRegression.class),
};
};
}