/* * IndividualPrior.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.evomodel.epidemiology.casetocase.periodpriors; import dr.evomodel.epidemiology.casetocase.AbstractCase; import dr.inference.distribution.LogNormalDistributionModel; import dr.inference.distribution.NormalDistributionModel; import dr.inference.distribution.ParametricDistributionModel; import dr.math.distributions.LogNormalDistribution; import dr.math.distributions.NormalDistribution; import dr.xml.*; import java.util.HashMap; /** * Created by mhall on 03/06/2014. */ public class IndividualPrior extends AbstractPeriodPriorDistribution { ParametricDistributionModel distribution; public static final String INDIVIDUAL_PRIOR = "individualPrior"; public static final String ID = "id"; public static final String DISTRIBUTION = "distribution"; public IndividualPrior(String name, ParametricDistributionModel distribution){ super(name, false); this.distribution = distribution; } public void reset() { // nothing to do. } public double calculateLogPosteriorProbability(double newValue, double minValue) { double logNumerator = distribution.logPdf(newValue); double logDenominator = Math.log(1-distribution.cdf(minValue)); if(logDenominator == Double.NEGATIVE_INFINITY){ if(distribution instanceof LogNormalDistributionModel){ double mean = ((LogNormalDistributionModel)distribution).getM(); double stdev = ((LogNormalDistributionModel)distribution).getS(); double scaledValue = (Math.log(minValue)-mean)/stdev; logDenominator = NormalDistribution.standardCDF(-scaledValue, true); } else if (distribution instanceof NormalDistributionModel){ double mean = ((NormalDistributionModel)distribution).getMean().getValue(0); double stdev = ((NormalDistributionModel)distribution).getStdev(); double scaledValue = (minValue-mean)/stdev; logDenominator = NormalDistribution.standardCDF(-scaledValue, true); } } return logNumerator - logDenominator; } public double calculateLogPosteriorCDF(double limit, boolean upper) { double out; if(upper) { out = Math.log(1-distribution.cdf(limit)); } else { out = Math.log(distribution.cdf(limit)); } if(out == Double.NEGATIVE_INFINITY){ if(distribution instanceof LogNormalDistributionModel){ double mean = ((LogNormalDistributionModel)distribution).getM(); double stdev = ((LogNormalDistributionModel)distribution).getS(); double scaledValue = (Math.log(limit)-mean)/stdev; out = NormalDistribution.standardCDF(-scaledValue, true); } else if (distribution instanceof NormalDistributionModel){ double mean = ((NormalDistributionModel)distribution).getMean().getValue(0); double stdev = ((NormalDistributionModel)distribution).getStdev(); double scaledValue = (limit-mean)/stdev; out = NormalDistribution.standardCDF(-scaledValue, true); } } return out; } public double calculateLogLikelihood(double[] values) { double out = 0; for (double value : values) { out += distribution.logPdf(value); } return out; } public static XMLObjectParser PARSER = new AbstractXMLObjectParser() { public String getParserName() { return INDIVIDUAL_PRIOR; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { String id = (String) xo.getAttribute(ID); ParametricDistributionModel distribution = (ParametricDistributionModel)xo.getElementFirstChild(DISTRIBUTION); return new IndividualPrior(id, distribution); } public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { AttributeRule.newStringRule(ID, false), new ElementRule(DISTRIBUTION, ParametricDistributionModel.class) }; public String getParserDescription() { return "Calculates the probability of a set of doubles all being drawn from the specified prior " + "distribution"; } public Class getReturnType() { return IndividualPrior.class; } }; }