/*
* IndividualPrior.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.evomodel.epidemiology.casetocase.periodpriors;
import dr.evomodel.epidemiology.casetocase.AbstractCase;
import dr.inference.distribution.LogNormalDistributionModel;
import dr.inference.distribution.NormalDistributionModel;
import dr.inference.distribution.ParametricDistributionModel;
import dr.math.distributions.LogNormalDistribution;
import dr.math.distributions.NormalDistribution;
import dr.xml.*;
import java.util.HashMap;
/**
* Created by mhall on 03/06/2014.
*/
public class IndividualPrior extends AbstractPeriodPriorDistribution {
ParametricDistributionModel distribution;
public static final String INDIVIDUAL_PRIOR = "individualPrior";
public static final String ID = "id";
public static final String DISTRIBUTION = "distribution";
public IndividualPrior(String name, ParametricDistributionModel distribution){
super(name, false);
this.distribution = distribution;
}
public void reset() {
// nothing to do.
}
public double calculateLogPosteriorProbability(double newValue, double minValue) {
double logNumerator = distribution.logPdf(newValue);
double logDenominator = Math.log(1-distribution.cdf(minValue));
if(logDenominator == Double.NEGATIVE_INFINITY){
if(distribution instanceof LogNormalDistributionModel){
double mean = ((LogNormalDistributionModel)distribution).getM();
double stdev = ((LogNormalDistributionModel)distribution).getS();
double scaledValue = (Math.log(minValue)-mean)/stdev;
logDenominator = NormalDistribution.standardCDF(-scaledValue, true);
} else if (distribution instanceof NormalDistributionModel){
double mean = ((NormalDistributionModel)distribution).getMean().getValue(0);
double stdev = ((NormalDistributionModel)distribution).getStdev();
double scaledValue = (minValue-mean)/stdev;
logDenominator = NormalDistribution.standardCDF(-scaledValue, true);
}
}
return logNumerator - logDenominator;
}
public double calculateLogPosteriorCDF(double limit, boolean upper) {
double out;
if(upper) {
out = Math.log(1-distribution.cdf(limit));
} else {
out = Math.log(distribution.cdf(limit));
}
if(out == Double.NEGATIVE_INFINITY){
if(distribution instanceof LogNormalDistributionModel){
double mean = ((LogNormalDistributionModel)distribution).getM();
double stdev = ((LogNormalDistributionModel)distribution).getS();
double scaledValue = (Math.log(limit)-mean)/stdev;
out = NormalDistribution.standardCDF(-scaledValue, true);
} else if (distribution instanceof NormalDistributionModel){
double mean = ((NormalDistributionModel)distribution).getMean().getValue(0);
double stdev = ((NormalDistributionModel)distribution).getStdev();
double scaledValue = (limit-mean)/stdev;
out = NormalDistribution.standardCDF(-scaledValue, true);
}
}
return out;
}
public double calculateLogLikelihood(double[] values) {
double out = 0;
for (double value : values) {
out += distribution.logPdf(value);
}
return out;
}
public static XMLObjectParser PARSER = new AbstractXMLObjectParser() {
public String getParserName() {
return INDIVIDUAL_PRIOR;
}
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
String id = (String) xo.getAttribute(ID);
ParametricDistributionModel distribution =
(ParametricDistributionModel)xo.getElementFirstChild(DISTRIBUTION);
return new IndividualPrior(id, distribution);
}
public XMLSyntaxRule[] getSyntaxRules() {
return rules;
}
private final XMLSyntaxRule[] rules = {
AttributeRule.newStringRule(ID, false),
new ElementRule(DISTRIBUTION, ParametricDistributionModel.class)
};
public String getParserDescription() {
return "Calculates the probability of a set of doubles all being drawn from the specified prior " +
"distribution";
}
public Class getReturnType() {
return IndividualPrior.class;
}
};
}