/* * ConstExpConst.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.evolution.coalescent; /** * This class models exponential growth from an initial population size which * then transitions back to a constant population size. * * @author Andrew Rambaut * @author Alexei Drummond * * @version $ID$ * */ public class ConstExpConst extends DemographicFunction.Abstract { public enum Parameterization { GROWTH_RATE, ANCESTRAL_POPULATION_SIZE } /** * Construct demographic model with default settings */ public ConstExpConst(Type units) { this(Parameterization.ANCESTRAL_POPULATION_SIZE, false, units); } public ConstExpConst(Parameterization parameterization, boolean useNumericalIntegrator, Type units) { super(units); this.parameterization = parameterization; this.useNumericalIntegrator = useNumericalIntegrator; } /** * @return initial population size. */ public double getN0() { return N0; } /** * sets initial population size. * @param N0 new size */ public void setN0(double N0) { this.N0 = N0; } /** * @return ancestral population size. */ public double getN1() { if (parameterization == Parameterization.ANCESTRAL_POPULATION_SIZE) { return N1; } return N0 * Math.exp(-epochTime * growthRate); } /** * sets ancestral population size. Can only be set if the parameterization is ANCESTRAL_POPULATION_SIZE * @param N1 new size */ public void setN1(double N1) { assert(parameterization == Parameterization.ANCESTRAL_POPULATION_SIZE); this.N1 = N1; } /** * return the first transition time to exponential growth * @return */ public double getTime1() { return time1; } public void setTime1(double time1) { this.time1 = time1; } /** * Get the time period of exponential growth phase * @return */ public double getEpochTime() { return epochTime; } public void setEpochTime(double epochTime) { this.epochTime = epochTime; } /** * Return the second transition time to constant size N1 * @return */ public double getTime2() { return time1 + epochTime; } /** * sets growth rate for exponential phase. Can only be set if the parameterization is GROWTH_RATE * @param growthRate new growthRate */ public final void setGrowthRate(double growthRate) { assert(parameterization == Parameterization.GROWTH_RATE); this.growthRate = growthRate; } /** * @return growth rate. */ public final double getGrowthRate() { if (parameterization == Parameterization.GROWTH_RATE) { return growthRate; } return (Math.log(N0) - Math.log(N1)) / epochTime; } // Implementation of abstract methods public double getDemographic(double t) { double r = getGrowthRate(); if (t < getTime1()) { return getN0(); } if (t >= getTime2()) { return getN1(); } return getN0() * Math.exp(-r*(t - getTime1())); } /** * Calculates the integral 1/N(x) dx between start and finish. */ public double getIntegral(double start, double finish) { if (useNumericalIntegrator) { return getNumericalIntegral(start, finish); } else { return getIntensity(finish) - getIntensity(start); } } /** * Returns value of demographic intensity function at time t * (= integral 1/N(x) dx from 0 to t). */ public double getIntensity(double t) { double time2 = getTime2(); double oneOverN0 = 1.0 / getN0(); double r = getGrowthRate(); if (t < time1) { return (t * oneOverN0); } if (t > time1 && t < time2) { return (time1 * oneOverN0) + (( (Math.exp(t*r) - Math.exp(time1*r)) * oneOverN0) / r); } double oneOverN1 = 1.0 / getN1(); // if (t >= time2) { return (time1 * oneOverN0) + (( (Math.exp(time2*r) - Math.exp(time1*r)) * oneOverN0) / r) + (oneOverN1 * (t-time2)); } public double getInverseIntensity(double x) { throw new RuntimeException("Not implemented!"); } public int getNumArguments() { return 4; } public String getArgumentName(int n) { switch (n) { case 0: return "N0"; case 1: return (parameterization == Parameterization.ANCESTRAL_POPULATION_SIZE ? "N1": "r"); case 2: return "epochTime"; case 3: return "time1"; } throw new IllegalArgumentException("Argument " + n + " does not exist"); } public double getArgument(int n) { switch (n) { case 0: return getN0(); case 1: return (parameterization == Parameterization.ANCESTRAL_POPULATION_SIZE ? getN1(): getGrowthRate()); case 2: return getEpochTime(); case 3: return getTime1(); } throw new IllegalArgumentException("Argument " + n + " does not exist"); } public void setArgument(int n, double value) { switch (n) { case 0: setN0(value); break; case 1: if (parameterization == Parameterization.ANCESTRAL_POPULATION_SIZE) { setN1(value); } else { setGrowthRate(value); } break; case 2: setEpochTime(value); break; case 3: setTime1(value); break; default: throw new IllegalArgumentException("Argument " + n + " does not exist"); } } public double getLowerBound(int n) { if (n == 1 && parameterization == Parameterization.GROWTH_RATE) { return Double.NEGATIVE_INFINITY; } return 0.0; } public double getUpperBound(int n) { return Double.POSITIVE_INFINITY; } // // private stuff // private double N0; private double N1; private double time1; private double epochTime; private double growthRate; private final boolean useNumericalIntegrator; private final Parameterization parameterization; }