/*
* ExponentialMarkovModel.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.inference.distribution;
import dr.inference.model.AbstractModelLikelihood;
import dr.inference.model.Model;
import dr.inference.model.Parameter;
import dr.inference.model.Variable;
import dr.math.distributions.GammaDistribution;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
/**
* A class that acts as a model for exponentially distributed data.
*
* @author Andrew Rambaut
* @author Alexei Drummond
* @author Gerton Lunter
* @version $Id: ExponentialMarkovModel.java,v 1.8 2005/05/24 20:25:59 rambaut Exp $
*/
public class ExponentialMarkovModel extends AbstractModelLikelihood {
public static final String EXPONENTIAL_MARKOV_MODEL = "exponentialMarkovLikelihood";
/**
* Constructor.
*/
public ExponentialMarkovModel(Parameter chainParameter, boolean jeffreys, boolean reverse, double shape) {
super(EXPONENTIAL_MARKOV_MODEL);
this.chainParameter = chainParameter;
this.jeffreys = jeffreys;
this.reverse = reverse;
this.shape = shape;
addVariable(chainParameter);
chainParameter.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, 0.0, chainParameter.getDimension()));
}
public Parameter getChainParameter() {
return (Parameter)getVariable(0);
}
// *****************************************************************
// Interface Model
// *****************************************************************
public void handleModelChangedEvent(Model model, Object object, int index) {
// no intermediates need to be recalculated...
}
protected final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) {
// no intermediates need to be recalculated...
}
protected void storeState() {
} // no additional state needs storing
protected void restoreState() {
} // no additional state needs restoring
protected void acceptState() {
} // no additional state needs accepting
// **************************************************************
// XMLElement IMPLEMENTATION
// **************************************************************
public Element createElement(Document document) {
throw new RuntimeException("Not implemented!");
}
// **************************************************************
// Likelihood
// **************************************************************
/**
* Get the model.
*
* @return the model.
*/
public Model getModel() {
return this;
}
private int index(int i) {
if (reverse)
return chainParameter.getDimension() - i - 1;
else
return i;
}
/**
* Get the log likelihood.
*
* @return the log likelihood.
*/
public double getLogLikelihood() {
double logL = 0.0;
// jeffreys Prior!
if (jeffreys) {
logL += -Math.log(chainParameter.getParameterValue(index(0)));
}
for (int i = 1; i < chainParameter.getDimension(); i++) {
final double mean = chainParameter.getParameterValue(index(i - 1));
final double x = chainParameter.getParameterValue(index(i));
//logL += dr.math.distributions.ExponentialDistribution.logPdf(x, 1.0/mean);
final double scale = mean / shape;
logL += GammaDistribution.logPdf(x, shape, scale);
}
return logL;
}
/**
* Forces a complete recalculation of the likelihood next time getLikelihood is called
*/
public void makeDirty() {
}
// **************************************************************
// Identifiable IMPLEMENTATION
// **************************************************************
private String id = null;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
// **************************************************************
// Private instance variables
// **************************************************************
private Parameter chainParameter = null;
private boolean jeffreys = false;
private boolean reverse = false;
private double shape = 1.0;
}