/* * ExponentialMarkovModel.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.inference.distribution; import dr.inference.model.AbstractModelLikelihood; import dr.inference.model.Model; import dr.inference.model.Parameter; import dr.inference.model.Variable; import dr.math.distributions.GammaDistribution; import org.w3c.dom.Document; import org.w3c.dom.Element; /** * A class that acts as a model for exponentially distributed data. * * @author Andrew Rambaut * @author Alexei Drummond * @author Gerton Lunter * @version $Id: ExponentialMarkovModel.java,v 1.8 2005/05/24 20:25:59 rambaut Exp $ */ public class ExponentialMarkovModel extends AbstractModelLikelihood { public static final String EXPONENTIAL_MARKOV_MODEL = "exponentialMarkovLikelihood"; /** * Constructor. */ public ExponentialMarkovModel(Parameter chainParameter, boolean jeffreys, boolean reverse, double shape) { super(EXPONENTIAL_MARKOV_MODEL); this.chainParameter = chainParameter; this.jeffreys = jeffreys; this.reverse = reverse; this.shape = shape; addVariable(chainParameter); chainParameter.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, 0.0, chainParameter.getDimension())); } public Parameter getChainParameter() { return (Parameter)getVariable(0); } // ***************************************************************** // Interface Model // ***************************************************************** public void handleModelChangedEvent(Model model, Object object, int index) { // no intermediates need to be recalculated... } protected final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) { // no intermediates need to be recalculated... } protected void storeState() { } // no additional state needs storing protected void restoreState() { } // no additional state needs restoring protected void acceptState() { } // no additional state needs accepting // ************************************************************** // XMLElement IMPLEMENTATION // ************************************************************** public Element createElement(Document document) { throw new RuntimeException("Not implemented!"); } // ************************************************************** // Likelihood // ************************************************************** /** * Get the model. * * @return the model. */ public Model getModel() { return this; } private int index(int i) { if (reverse) return chainParameter.getDimension() - i - 1; else return i; } /** * Get the log likelihood. * * @return the log likelihood. */ public double getLogLikelihood() { double logL = 0.0; // jeffreys Prior! if (jeffreys) { logL += -Math.log(chainParameter.getParameterValue(index(0))); } for (int i = 1; i < chainParameter.getDimension(); i++) { final double mean = chainParameter.getParameterValue(index(i - 1)); final double x = chainParameter.getParameterValue(index(i)); //logL += dr.math.distributions.ExponentialDistribution.logPdf(x, 1.0/mean); final double scale = mean / shape; logL += GammaDistribution.logPdf(x, shape, scale); } return logL; } /** * Forces a complete recalculation of the likelihood next time getLikelihood is called */ public void makeDirty() { } // ************************************************************** // Identifiable IMPLEMENTATION // ************************************************************** private String id = null; public void setId(String id) { this.id = id; } public String getId() { return id; } // ************************************************************** // Private instance variables // ************************************************************** private Parameter chainParameter = null; private boolean jeffreys = false; private boolean reverse = false; private double shape = 1.0; }