/* * AminoAcidLikelihoodCore.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.oldevomodel.treelikelihood; /** * AminoAcidLikelihoodCore - An implementation of LikelihoodCore for Amino Acid data * * @version $Id: AminoAcidLikelihoodCore.java,v 1.8 2006/08/31 14:57:24 rambaut Exp $ * * @author Andrew Rambaut */ @Deprecated // Switching to BEAGLE public class AminoAcidLikelihoodCore extends AbstractLikelihoodCore { /** * Constructor * */ public AminoAcidLikelihoodCore() { super(20); } /** * Calculates partial likelihoods at a node when both children have states. */ protected void calculateStatesStatesPruning(int[] states1, double[] matrices1, int[] states2, double[] matrices2, double[] partials3) { int v = 0; int u = 0; for (int j = 0; j < matrixCount; j++) { for (int k = 0; k < patternCount; k++) { int w = u; int state1 = states1[k]; int state2 = states2[k]; if (state1 < 20 && state2 < 20) { partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; partials3[v] = matrices1[w + state1] * matrices2[w + state2]; v++; w += 20; } else if (state1 < 20) { // child 2 has a gap or unknown state so don't use it partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; partials3[v] = matrices1[w + state1]; v++; w += 20; } else if (state2 < 20) { // child 2 has a gap or unknown state so don't use it partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; partials3[v] = matrices2[w + state2]; v++; w += 20; } else { // both children have a gap or unknown state so set partials to 1 partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; partials3[v] = 1.0; v++; } } u += matrixSize; } } /** * Calculates partial likelihoods at a node when one child has states and one has partials. */ protected void calculateStatesPartialsPruning( int[] states1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3) { int u = 0; int v = 0; int w = 0; int x, y; for (int l = 0; l < matrixCount; l++) { for (int k = 0; k < patternCount; k++) { int state1 = states1[k]; if (state1 < 20) { double sum; x = w; for (int i = 0; i < 20; i++) { y = v; double value = matrices1[x + state1]; sum = matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; partials3[u] = value * sum; u++; } v += 20; } else { // Child 1 has a gap or unknown state so don't use it double sum; x = w; for (int i = 0; i < 20; i++) { y = v; sum = matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; sum += matrices2[x] * partials2[y]; x++; y++; partials3[u] = sum; u++; } v += 20; } } w += matrixSize; } } /** * Calculates partial likelihoods at a node when both children have partials. */ protected void calculatePartialsPartialsPruning(double[] partials1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3) { double sum1, sum2; int u = 0; int v = 0; int w = 0; int x, y; for (int l = 0; l < matrixCount; l++) { for (int k = 0; k < patternCount; k++) { x = w; for (int i = 0; i < 20; i++) { y = v; sum1 = matrices1[x] * partials1[y]; sum2 = matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; sum1 += matrices1[x] * partials1[y]; sum2 += matrices2[x] * partials2[y]; x++; y++; partials3[u] = sum1 * sum2; u++; } v += 20; } w += matrixSize; } } /** * Calculates partial likelihoods at a node when both children have states. */ protected void calculateStatesStatesPruning(int[] states1, double[] matrices1, int[] states2, double[] matrices2, double[] partials3, int[] matrixMap) { throw new RuntimeException("calculateStatesStatesPruning not implemented using matrixMap"); } /** * Calculates partial likelihoods at a node when one child has states and one has partials. */ protected void calculateStatesPartialsPruning( int[] states1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3, int[] matrixMap) { throw new RuntimeException("calculateStatesStatesPruning not implemented using matrixMap"); } /** * Calculates partial likelihoods at a node when both children have partials. */ protected void calculatePartialsPartialsPruning(double[] partials1, double[] matrices1, double[] partials2, double[] matrices2, double[] partials3, int[] matrixMap) { throw new RuntimeException("calculateStatesStatesPruning not implemented using matrixMap"); } /** * Integrates partials across categories. * @param inPartials the array of partials to be integrated * @param proportions the proportions of sites in each category * @param outPartials an array into which the partials will go */ public void calculateIntegratePartials(double[] inPartials, double[] proportions, double[] outPartials) { int u = 0; int v = 0; for (int k = 0; k < patternCount; k++) { outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; outPartials[u] = inPartials[v] * proportions[0]; u++; v++; } for (int j = 1; j < matrixCount; j++) { u = 0; for (int k = 0; k < patternCount; k++) { outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; outPartials[u] += inPartials[v] * proportions[j]; u++; v++; } } } /** * Calculates site likelihoods at a node. * @param partials the partials used to calculate the likelihoods * @param frequencies an array of state frequencies * @param outLogLikelihoods an array into which the likelihoods will go */ public void calculateLogLikelihoods(double[] partials, double[] frequencies, double[] outLogLikelihoods) { int v = 0; for (int k = 0; k < patternCount; k++) { double sum = frequencies[0] * partials[v]; v++; sum += frequencies[1] * partials[v]; v++; sum += frequencies[2] * partials[v]; v++; sum += frequencies[3] * partials[v]; v++; sum += frequencies[4] * partials[v]; v++; sum += frequencies[5] * partials[v]; v++; sum += frequencies[6] * partials[v]; v++; sum += frequencies[7] * partials[v]; v++; sum += frequencies[8] * partials[v]; v++; sum += frequencies[9] * partials[v]; v++; sum += frequencies[10] * partials[v]; v++; sum += frequencies[11] * partials[v]; v++; sum += frequencies[12] * partials[v]; v++; sum += frequencies[13] * partials[v]; v++; sum += frequencies[14] * partials[v]; v++; sum += frequencies[15] * partials[v]; v++; sum += frequencies[16] * partials[v]; v++; sum += frequencies[17] * partials[v]; v++; sum += frequencies[18] * partials[v]; v++; sum += frequencies[19] * partials[v]; v++; outLogLikelihoods[k] = Math.log(sum) + getLogScalingFactor(k); } } }