/*
* FullyConjugateTreeTipsPotentialDerivative.java
*
* Copyright (c) 2002-2017 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.evomodel.continuous.hmc;
import dr.evomodel.continuous.FullyConjugateMultivariateTraitLikelihood;
import dr.inference.hmc.GradientWrtParameterProvider;
import dr.inference.model.Likelihood;
import dr.inference.model.Parameter;
/**
* @author Max Tolkoff
*/
public class FullyConjugateTreeTipsPotentialDerivative implements GradientWrtParameterProvider {
private final FullyConjugateMultivariateTraitLikelihood treeLikelihood;
private final Parameter traitParameter;
public FullyConjugateTreeTipsPotentialDerivative(FullyConjugateMultivariateTraitLikelihood treeLikelihood){
this.treeLikelihood = treeLikelihood;
traitParameter = treeLikelihood.getTraitParameter();
}
@Override
public Likelihood getLikelihood() {
return treeLikelihood;
}
@Override
public Parameter getParameter() {
return traitParameter;
}
@Override
public int getDimension() {
return traitParameter.getDimension();
}
@Override
public double[] getGradientLogDensity() {
final int dimTraits = treeLikelihood.getDimTrait() * treeLikelihood.getNumData();
final int ntaxa = traitParameter.getDimension() / dimTraits;
final double[] derivative = new double[traitParameter.getDimension()];
final double[][] allMeans = treeLikelihood.getConditionalMeans();
final double[] allScalars = treeLikelihood.getPrecisionFactors();
final double[][] precisionMatrix = treeLikelihood.getDiffusionModel().getPrecisionmatrix();
for (int i = 0; i < ntaxa; ++i) {
final double[] mean = allMeans[i];
final double scale = allScalars[i];
for (int j = 0; j < dimTraits; ++j) {
double sum = 0.0;
for (int k = 0; k < dimTraits; ++k) {
sum += (mean[k] - traitParameter.getParameterValue(i * dimTraits + k)) * scale * precisionMatrix[j][k];
}
derivative[i * dimTraits + j] = sum;
}
}
// for (int i = 0; i < dimTraits; i++) { // This only works for IDENTITY matrices
// for (int j = 0; j < ntaxa; j++) {
// derivative[j * dimTraits + i] -= (traitParameter.getParameterValue(j * dimTraits + i) - mean[j][i]) * precfactor[j];
// /* Sign change */
// }
//
// }
return derivative;
}
}