/*
* TraitLikelihood.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.evomodel.continuous;
import dr.evolution.tree.NodeRef;
import dr.evomodel.tree.TreeModel;
import dr.inference.model.AbstractModelLikelihood;
import dr.inference.model.Model;
import dr.inference.model.Parameter;
import dr.inference.model.Variable;
import dr.xml.*;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import java.util.ArrayList;
/**
* A class that returns the log likelihood of a set of data (statistics)
* being distributed according to the given parametric distribution.
*
* @author Alexei Drummond
* @version $Id: TraitLikelihood.java,v 1.7 2004/11/25 12:19:56 rambaut Exp $
*/
public class TraitLikelihood extends AbstractModelLikelihood {
public static final String TRAIT_LIKELIHOOD = "traitLikelihood";
public static final String TRAIT_NAME = "traitName";
public static final String JEFFERYS_PRIOR = "jefferysPrior";
public static final String MODEL = "model";
public static final String TREE = "tree";
public TraitLikelihood(TreeModel treeModel, DiffusionModel diffusionModel, String traitName, boolean jeffreysPrior) {
super(TRAIT_LIKELIHOOD);
this.treeModel = treeModel;
this.diffusionModel = diffusionModel;
this.jeffreysPrior = jeffreysPrior;
addModel(treeModel);
addModel(diffusionModel);
this.traitName = traitName;
}
// **************************************************************
// ModelListener IMPLEMENTATION
// **************************************************************
protected void handleModelChangedEvent(Model model, Object object, int index) {
likelihoodKnown = false;
}
// **************************************************************
// VariableListener IMPLEMENTATION
// **************************************************************
protected final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) {
}
// **************************************************************
// Model IMPLEMENTATION
// **************************************************************
/**
* Stores the precalculated state: in this case the intervals
*/
protected void storeState() {
storedLikelihoodKnown = likelihoodKnown;
storedLogLikelihood = logLikelihood;
}
/**
* Restores the precalculated state: that is the intervals of the tree.
*/
protected void restoreState() {
likelihoodKnown = storedLikelihoodKnown;
logLikelihood = storedLogLikelihood;
}
protected void acceptState() {
} // nothing to do
// **************************************************************
// Likelihood IMPLEMENTATION
// **************************************************************
public Model getModel() {
return this;
}
public final double getLogLikelihood() {
if (!likelihoodKnown) {
logLikelihood = calculateLogLikelihood();
likelihoodKnown = true;
}
return logLikelihood;
}
public void makeDirty() {
likelihoodKnown = false;
}
/**
* Calculate the log likelihood of the current state.
*
* @return the log likelihood.
*/
public double calculateLogLikelihood() {
double logLikelihood = traitLogLikelihood(treeModel.getRoot());
if (logLikelihood > maxLogLikelihood) {
maxLogLikelihood = logLikelihood;
}
return logLikelihood;
}
public double getMaxLogLikelihood() {
return maxLogLikelihood;
}
private double traitLogLikelihood(NodeRef node) {
double logL = 0.0;
if (!treeModel.isRoot(node)) {
NodeRef parent = treeModel.getParent(node);
Double parentTrait = (Double) treeModel.getNodeAttribute(parent, traitName);
Double childTrait = (Double) treeModel.getNodeAttribute(node, traitName);
double time = treeModel.getNodeHeight(parent) - treeModel.getNodeHeight(node);
logL = diffusionModel.getLogLikelihood(parentTrait, childTrait, time);
}
int childCount = treeModel.getChildCount(node);
for (int i = 0; i < childCount; i++) {
logL += traitLogLikelihood(treeModel.getChild(node, i));
}
if (jeffreysPrior) {
logL += Math.log(1 / diffusionModel.getD());
}
return logL;
}
// **************************************************************
// XMLElement IMPLEMENTATION
// **************************************************************
public Element createElement(Document d) {
throw new RuntimeException("Not implemented yet!");
}
// **************************************************************
// XMLObjectParser
// **************************************************************
public static XMLObjectParser PARSER = new AbstractXMLObjectParser() {
public String getParserName() {
return TRAIT_LIKELIHOOD;
}
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
DiffusionModel diffusionModel = (DiffusionModel) xo.getChild(DiffusionModel.class);
TreeModel treeModel = (TreeModel) xo.getChild(TreeModel.class);
String traitName = xo.getStringAttribute(TRAIT_NAME);
boolean jeffreysPrior = xo.getBooleanAttribute(JEFFERYS_PRIOR);
return new TraitLikelihood(treeModel, diffusionModel, traitName, jeffreysPrior);
}
//************************************************************************
// AbstractXMLObjectParser implementation
//************************************************************************
public String getParserDescription() {
return "Provides the likelihood of a continuous trait evolving on a tree by a " +
"given diffusion model.";
}
public XMLSyntaxRule[] getSyntaxRules() {
return rules;
}
private final XMLSyntaxRule[] rules = {
new StringAttributeRule(TRAIT_NAME, "The name of the trait for which a likelihood should be calculated"),
AttributeRule.newBooleanRule(JEFFERYS_PRIOR),
new ElementRule(DiffusionModel.class),
new ElementRule(TreeModel.class)
};
public Class getReturnType() {
return TraitLikelihood.class;
}
};
TreeModel treeModel = null;
DiffusionModel diffusionModel = null;
String traitName = null;
private boolean jeffreysPrior = false;
ArrayList dataList = new ArrayList();
private double logLikelihood;
private double maxLogLikelihood = Double.NEGATIVE_INFINITY;
private double storedLogLikelihood;
private boolean likelihoodKnown = false;
private boolean storedLikelihoodKnown = false;
}