/* * RiemannApproximation.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.math; import dr.math.distributions.NormalDistribution; /** * Approximates the integral of a given function using Riemann integration * * @author Alexei Drummond * @version $Id: RiemannApproximation.java,v 1.3 2005/05/24 20:26:01 rambaut Exp $ */ public class RiemannApproximation implements Integral { public enum variant { UPPER, LOWER, MIDPOINT, TRAPEZOID } public RiemannApproximation(int sampleSize, variant mode) { this.mode = mode; this.sampleSize = sampleSize; } public RiemannApproximation(int sampleSize) { this(sampleSize, variant.UPPER); } /** * @param f the function whose integral is of interest * @param min the minimum value of the function * @param max the upper limit of the function * @return the approximate integral of the given function * within the given range. */ public double integrate(UnivariateFunction f, double min, double max) { double integral = 0.0; double gridpoint = min; double step = (max - min) / sampleSize; switch (mode){ case UPPER: for (int i = 1; i <= sampleSize; i++) { gridpoint += step; integral += f.evaluate(gridpoint); } break; case LOWER: for (int i = 1; i <= sampleSize; i++) { integral += f.evaluate(gridpoint); gridpoint += step; } break; case MIDPOINT: for (int i = 1; i <= sampleSize; i++) { integral += f.evaluate(gridpoint + step/2); gridpoint += step; } break; case TRAPEZOID: for (int i = 1; i <= sampleSize; i++) { integral += (f.evaluate(gridpoint) + f.evaluate(gridpoint+step))/2; gridpoint += step; } break; } integral *= (max - min) / (double) sampleSize; return integral; } // this does the addition on a log scale, in case of underflow public double logIntegrate(UnivariateFunction f, double min, double max){ double logIntegral = Double.NEGATIVE_INFINITY; double gridpoint = min; double step = (max - min) / sampleSize; switch (mode){ case UPPER: for (int i = 1; i <= sampleSize; i++) { gridpoint += step; logIntegral = LogTricks.logSum(logIntegral, Math.log(f.evaluate(gridpoint))); } break; case LOWER: for (int i = 1; i <= sampleSize; i++) { logIntegral = LogTricks.logSum(logIntegral, Math.log(f.evaluate(gridpoint))); gridpoint += step; } break; case MIDPOINT: for (int i = 1; i <= sampleSize; i++) { logIntegral = LogTricks.logSum(logIntegral, Math.log(f.evaluate(gridpoint+step/2))); gridpoint += step; } break; case TRAPEZOID: for (int i = 1; i <= sampleSize; i++) { logIntegral = LogTricks.logSum(logIntegral, Math.log((f.evaluate(gridpoint) + f.evaluate(gridpoint+step))/2)); gridpoint += step; } break; } logIntegral += Math.log((max - min) / (double) sampleSize); return logIntegral; } public variant getMode() { return mode; } public static void main(String[] args) { UnivariateFunction normalPDF = new NormalDistribution(0.0, 1.0).getProbabilityDensityFunction(); UnivariateFunction normalPDF2 = new NormalDistribution(0.0, 1.0).getProbabilityDensityFunction(); UnivariateFunction normalPDF3 = new NormalDistribution(0.0, 1.0).getProbabilityDensityFunction(); double Z = 1.0; //double Z = Math.sqrt(2*Math.PI); CompoundFunction threeNormals = new CompoundFunction(new UnivariateFunction[]{normalPDF, normalPDF2, normalPDF3}, Z); System.out.println("Riemann approximation to the integral of a three normal distribution:"); RiemannApproximation integrator = new RiemannApproximation(100000); System.out.println("integral(N(0.0, 1.0))=" + integrator.integrate(normalPDF, -4.0, 4.0)); System.out.println("integral(N(1.0, 2.0))=" + integrator.integrate(normalPDF2, -8.0, 8.0)); System.out.println("integral(N(2.0, 3.0))=" + integrator.integrate(normalPDF3, -16.0, 16.0)); double integral = integrator.integrate(threeNormals, -16.0, 16.0); System.out.println("Riemann approximation to the integral of the compound of three normal distribution:"); System.out.println("integral(N(0.0, 1.0)*N(1.0, 2.0)*N(2.0, 3.0))=" + integral); System.out.println("Estimate normalizing constant is " + (1.0 / integral)); /*System.out.println("Ten monte carlo approximations to the integral of a normal distribution:"); MonteCarloIntegral integrator2 = new MonteCarloIntegral(10000); for (int i = 0; i < 10; i++) { System.out.println(integrator2.integrate(normalPDF, -4.0, 4.0)); }*/ } public int getSampleSize(){ return sampleSize; } private int sampleSize; private final variant mode; }