/*
* HierarchicalGraphLikelihood.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.inference.distribution;
import dr.inference.model.AbstractModelLikelihood;
import dr.inference.model.Model;
import dr.inference.model.Parameter;
import dr.inference.model.MatrixParameter;
import dr.inference.model.Variable;
import dr.math.Binomial;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
/**
*
*
* @author Gabriela Cybis
*/
public class HierarchicalGraphLikelihood extends AbstractModelLikelihood {
public static final String HIERARCHICAL_GRAPH_LIKELIHOOD = "hierarchicalGraphLikelihood";
public HierarchicalGraphLikelihood(Parameter hierarchicalIndicator, MatrixParameter strataIndicatorMatrix, Parameter prob) {
super(HIERARCHICAL_GRAPH_LIKELIHOOD);
this.hierarchicalIndicator = hierarchicalIndicator;
this.strataIndicatorMatrix = strataIndicatorMatrix;
this.prob = prob;
addVariable(hierarchicalIndicator);
addVariable(strataIndicatorMatrix);
addVariable(prob);
}
// **************************************************************
// Likelihood IMPLEMENTATION
// **************************************************************
public Parameter getHierarchicalIndicator() {
return this.hierarchicalIndicator;
}
public MatrixParameter getStrataMatrix() {
return this.strataIndicatorMatrix;
}
public Parameter getProb() {
return this.prob;
}
public Model getModel() {
return this;
}
/**
* Calculate the log likelihood of the current state.
*
* @return the log likelihood.
*/
public double getLogLikelihood() {
double p = prob.getParameterValue(0);
if (p <= 0 || p >= 1) return Double.NEGATIVE_INFINITY;
double logP = Math.log(p);
double log1MinusP = Math.log(1.0 - p);
if ( hierarchicalIndicator.getDimension()!= strataIndicatorMatrix.getRowDimension()) return Double.NEGATIVE_INFINITY;
double logL = 0.0;
for (int j =0; j < strataIndicatorMatrix.getColumnDimension();j++){
int diff = 0;
for (int i = 0; i < hierarchicalIndicator.getDimension(); i++) {
diff += (int) Math.abs(Math.round(hierarchicalIndicator.getParameterValue(i)-strataIndicatorMatrix.getParameterValue(i,j)));
} logL += geometricLogLikelihood( diff, logP, log1MinusP);
/** double logL += binomialLogLikelihood(hierarchicalIndicator.getDimension(), diff, logP, log1MinusP);
*binomialLogLikelihood(hierarchicalIndicator.getDimension(), diff, logP, log1MinusP);
*/
}
return logL;
}
public void makeDirty() {
}
public void acceptState() {
// DO NOTHING
}
public void restoreState() {
// DO NOTHING
}
public void storeState() {
// DO NOTHING
}
protected void handleModelChangedEvent(Model model, Object object, int index) {
// DO NOTHING
}
protected final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) {
// DO NOTHING
}
/**
* @return the bernoulli loglikelihood
* when the log of the probability is logP.
*/
private double binomialLogLikelihood(int trials, int count, double logP, double log1MinusP) {
return Math.log(Binomial.choose(trials, count)) + (logP * count) + (log1MinusP * (trials - count));
}
/**
* @return the geometric loglikelihood
* when the log of the probability is logP.
*/
private double geometricLogLikelihood( int count, double logP, double log1MinusP) {
return (log1MinusP ) + (logP * count);
}
// **************************************************************
// XMLElement IMPLEMENTATION
// **************************************************************
public Element createElement(Document d) {
throw new RuntimeException("Not implemented yet!");
}
// Binomial binom = new Binomial();
Parameter hierarchicalIndicator;
MatrixParameter strataIndicatorMatrix;
Parameter prob;
}