/* * TruncatedNormalDistributionModelParser.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.inferencexml.distribution; import dr.inference.distribution.TruncatedNormalDistributionModel; import dr.inference.model.Parameter; import dr.xml.*; /** * Reads a normal distribution model from a DOM Document element. */ public class TruncatedNormalDistributionModelParser extends AbstractXMLObjectParser { public static final String TRUNCATED_NORMAL_DISTRIBUTION_MODEL = "truncatedNormalDistributionModel"; public static final String MEAN = "mean"; public static final String STDEV = "stdev"; public static final String MINIMUM = "minimum"; public static final String MAXIMUM = "maximum"; public static final String PREC = "precision"; public String getParserName() { return TRUNCATED_NORMAL_DISTRIBUTION_MODEL; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { Parameter meanParam; Parameter stdevParam; Parameter minParam; Parameter maxParam; Parameter precParam; XMLObject cxo = xo.getChild(MEAN); if (cxo.getChild(0) instanceof Parameter) { meanParam = (Parameter) cxo.getChild(Parameter.class); } else { meanParam = new Parameter.Default(cxo.getDoubleChild(0)); } if(xo.hasChildNamed(MINIMUM)){ cxo = xo.getChild(MINIMUM); if(cxo.getChild(0) instanceof Parameter) { minParam = (Parameter) cxo.getChild(Parameter.class); } else { minParam = new Parameter.Default(cxo.getDoubleChild(0)); } } else { minParam = new Parameter.Default(Double.NEGATIVE_INFINITY); } if(xo.hasChildNamed(MAXIMUM)){ cxo = xo.getChild(MAXIMUM); if(cxo.getChild(0) instanceof Parameter) { maxParam = (Parameter) cxo.getChild(Parameter.class); } else { maxParam = new Parameter.Default(cxo.getDoubleChild(0)); } } else { maxParam = new Parameter.Default(Double.POSITIVE_INFINITY); } if (xo.getChild(STDEV) != null) { cxo = xo.getChild(STDEV); if (cxo.getChild(0) instanceof Parameter) { stdevParam = (Parameter) cxo.getChild(Parameter.class); } else { stdevParam = new Parameter.Default(cxo.getDoubleChild(0)); } return new TruncatedNormalDistributionModel(meanParam, stdevParam, minParam, maxParam); } cxo = xo.getChild(PREC); if (cxo.getChild(0) instanceof Parameter) { precParam = (Parameter) cxo.getChild(Parameter.class); } else { precParam = new Parameter.Default(cxo.getDoubleChild(0)); } return new TruncatedNormalDistributionModel(meanParam, precParam, minParam, maxParam, true); } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { new ElementRule(MEAN, new XMLSyntaxRule[]{ new XORRule( new ElementRule(Parameter.class), new ElementRule(Double.class) )} ), new XORRule( new ElementRule(STDEV, new XMLSyntaxRule[]{ new XORRule( new ElementRule(Parameter.class), new ElementRule(Double.class) )} ), new ElementRule(PREC, new XMLSyntaxRule[]{ new XORRule( new ElementRule(Parameter.class), new ElementRule(Double.class) )} ) ), new OrRule( new ElementRule(MINIMUM, new XMLSyntaxRule[]{ new XORRule( new ElementRule(Parameter.class), new ElementRule(Double.class) )} ), new ElementRule(MAXIMUM, new XMLSyntaxRule[]{ new XORRule( new ElementRule(Parameter.class), new ElementRule(Double.class) ) } ) ) }; public String getParserDescription() { return "Describes a truncated normal distribution with a given mean, standard deviation and minimum or" + "maximum (or both) values that can be used in a distributionLikelihood element"; } public Class getReturnType() { return TruncatedNormalDistributionModel.class; } }