/*
* LFMFactorPotentialDerivative.java
*
* Copyright (c) 2002-2017 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.inference.hmc;
import dr.inference.hmc.GradientWrtParameterProvider;
import dr.inference.model.LatentFactorModel;
import dr.inference.model.Likelihood;
import dr.inference.model.Parameter;
/**
* Created by maxryandolinskytolkoff on 3/1/17.
*/
public class LFMFactorPotentialDerivative implements GradientWrtParameterProvider {
LatentFactorModel lfm;
public LFMFactorPotentialDerivative(LatentFactorModel lfm){
this.lfm = lfm;
}
@Override
public Likelihood getLikelihood() {
return lfm;
}
@Override
public Parameter getParameter() {
return lfm.getFactors();
}
@Override
public int getDimension() {
return lfm.getFactors().getDimension();
}
@Override
public double[] getGradientLogDensity() {
double[] derivative = new double[lfm.getFactors().getDimension()];
Parameter missingIndicator = lfm.getMissingIndicator();
int ntaxa = lfm.getFactors().getColumnDimension();
int ntraits = lfm.getLoadings().getRowDimension();
int nfac = lfm.getLoadings().getColumnDimension();
double[] residual = lfm.getResidual();
for (int i = 0; i < nfac; i++) {
for (int j = 0; j < ntraits; j++) {
for (int k = 0; k < ntaxa; k++) {
if(missingIndicator == null || missingIndicator.getParameterValue(k * ntraits + j) != 1){
derivative[k * nfac + i] += lfm.getLoadings().getParameterValue(j, i) * lfm.getColumnPrecision().getParameterValue(j, j) *
residual[k * ntraits + j];
/* Sign change */
}
}
}
}
return derivative;
}
}