/* * LFMFactorPotentialDerivative.java * * Copyright (c) 2002-2017 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.inference.hmc; import dr.inference.hmc.GradientWrtParameterProvider; import dr.inference.model.LatentFactorModel; import dr.inference.model.Likelihood; import dr.inference.model.Parameter; /** * Created by maxryandolinskytolkoff on 3/1/17. */ public class LFMFactorPotentialDerivative implements GradientWrtParameterProvider { LatentFactorModel lfm; public LFMFactorPotentialDerivative(LatentFactorModel lfm){ this.lfm = lfm; } @Override public Likelihood getLikelihood() { return lfm; } @Override public Parameter getParameter() { return lfm.getFactors(); } @Override public int getDimension() { return lfm.getFactors().getDimension(); } @Override public double[] getGradientLogDensity() { double[] derivative = new double[lfm.getFactors().getDimension()]; Parameter missingIndicator = lfm.getMissingIndicator(); int ntaxa = lfm.getFactors().getColumnDimension(); int ntraits = lfm.getLoadings().getRowDimension(); int nfac = lfm.getLoadings().getColumnDimension(); double[] residual = lfm.getResidual(); for (int i = 0; i < nfac; i++) { for (int j = 0; j < ntraits; j++) { for (int k = 0; k < ntaxa; k++) { if(missingIndicator == null || missingIndicator.getParameterValue(k * ntraits + j) != 1){ derivative[k * nfac + i] += lfm.getLoadings().getParameterValue(j, i) * lfm.getColumnPrecision().getParameterValue(j, j) * residual[k * ntraits + j]; /* Sign change */ } } } } return derivative; } }