/*
* CorrelationStatistic.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.inference.model;
import dr.math.matrixAlgebra.SymmetricMatrix;
import dr.xml.*;
/**
* Created by IntelliJ IDEA.
* User: msuchard
* Date: Jul 7, 2007
* Time: 8:15:31 AM
* To change this template use File | Settings | File Templates.
*/
public class CorrelationStatistic extends Statistic.Abstract {
// public class CorrelationStatistic extends Statistic.Abstract {
public static final String CORRELATION_STATISTIC = "correlation";
public static final String DIMENSION1 = "dimension1";
public static final String DIMENSION2 = "dimension2";
private MatrixParameter precision = null;
private int dim1;
private int dim2;
public CorrelationStatistic(String name, MatrixParameter precision,
int dim1, int dim2) {
super(name);
this.precision = precision;
this.dim1 = dim1 - 1;
this.dim2 = dim2 - 1;
// System.err.println("MAKE!");
// System.exit(0);
}
public int getDimension() {
return 1;
}
public double getStatisticValue(int dim) {
double[][] variance = new SymmetricMatrix(
precision.getParameterAsMatrix()).inverse().toComponents();
return variance[dim1][dim2] /
Math.sqrt(variance[dim1][dim1] * variance[dim2][dim2]);
}
public static XMLObjectParser PARSER = new AbstractXMLObjectParser() {
public String getParserName() {
return CORRELATION_STATISTIC;
}
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
// ReciprocalStatistic recipStatistic = null;
MatrixParameter matrix = (MatrixParameter) xo.getChild(MatrixParameter.class);
int dim1 = xo.getIntegerAttribute(DIMENSION1);
int dim2 = xo.getIntegerAttribute(DIMENSION2);
if (dim1 < 1 || dim1 > matrix.getRowDimension() || dim2 < 1 || dim2 > matrix.getColumnDimension())
throw new XMLParseException("Invalid dimensions in " + getParserName() + " element");
return new CorrelationStatistic(CORRELATION_STATISTIC, matrix, dim1, dim2);
}
//************************************************************************
// AbstractXMLObjectParser implementation
//************************************************************************
public String getParserDescription() {
return "This element returns a precision that is the element-wise reciprocal of the child precision.";
}
public Class getReturnType() {
return ReciprocalStatistic.class;
}
public XMLSyntaxRule[] getSyntaxRules() {
return rules;
}
private XMLSyntaxRule[] rules = new XMLSyntaxRule[]{
new ElementRule(MatrixParameter.class, 1, 1),
AttributeRule.newIntegerRule(DIMENSION1),
AttributeRule.newIntegerRule(DIMENSION2)
};
};
// }
}