/*
* ExponentialBSPGrowth.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.evolution.coalescent;
/**
* This class models an exponentially growing (or shrinking) population
* (Parameters: N0=present-day population size; r=growth rate).
* This model is nested with the constant-population size model (r=0).
*
* @version $Id: ExponentialGrowth.java,v 1.7 2005/05/24 20:25:56 rambaut Exp $
*
* @author Alexei Drummond
* @author Andrew Rambaut
*/
public class ExponentialBSPGrowth extends DemographicFunction.Abstract {
/**
* Construct demographic model with default settings
* @param units of time
*/
public ExponentialBSPGrowth(Type units) {
super(units);
}
public void setup(double N0, double N1, double time) {
this.N0 = N0;
this.r = (Math.log(N0) - Math.log(N1)) / time;
}
public void setup(double N0, double r){
this.N0 = N0;
this.r = r;
}
public void setupN1(double N1, double r, double time) {
this.r = r;
this.N0 = N1*Math.exp(r*time);
}
// Implementation of abstract methods
public double getDemographic(double t) {
if (r == 0) {
return N0;
} else {
return N0 * Math.exp(-t * r);
}
}
public double getLogDemographic(double t) {
if (r == 0) {
return Math.log(N0);
} else {
return Math.log(N0) - (t * r);
}
}
/**
* Calculates the integral 1/N(x) dx between start and finish.
*/
@Override
public double getIntegral(double start, double finish) {
// double integral1 = getNumericalIntegral(start, finish);
double integral;
if (r == 0.0) {
integral = (finish - start) / N0;
} else {
integral = (Math.exp(finish*r) - Math.exp(start*r))/N0/r;
}
return integral;
}
/**
* @return the number of arguments for this function.
*/
public int getNumArguments() {
return 0;
}
/**
* @return the name of the n'th argument of this function.
*/
public String getArgumentName(int n) {
return null;
}
/**
* @return the value of the n'th argument of this function.
*/
public double getArgument(int n) {
return 0;
}
/**
* Sets the value of the nth argument of this function.
*/
public void setArgument(int n, double value) {
}
/**
* @return the lower bound of the nth argument of this function.
*/
public double getLowerBound(int n) {
return 0;
}
/**
* Returns the upper bound of the nth argument of this function.
*/
public double getUpperBound(int n) {
return 0;
}
/**
* Returns a copy of this function.
*/
public DemographicFunction getCopy() {
return null;
}
public double getIntensity(double t) {
throw new RuntimeException("not implemented");
}
public double getInverseIntensity(double x) {
throw new RuntimeException("not implemented");
}
private double r, N0;
}