/*
* ContinuousTraitBranchRateModel.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.evomodel.branchratemodel;
import dr.evolution.tree.NodeRef;
import dr.evolution.tree.Tree;
import dr.evomodel.continuous.SampledMultivariateTraitLikelihood;
import dr.evomodel.tree.TreeModel;
import dr.evomodelxml.branchratemodel.ContinuousTraitBranchRateModelParser;
import dr.inference.model.Model;
import dr.inference.model.Parameter;
import dr.inference.model.Variable;
/**
* Takes the log rates at each node provided by a specified rate and give the branch rate as the average.
*
* @author Andrew Rambaut
* @author Marc Suchard
*/
public class ContinuousTraitBranchRateModel extends AbstractBranchRateModel {
private final String trait;
private final int dimension;
private final Parameter rateParameter;
private final Parameter ratioParameter;
private SampledMultivariateTraitLikelihood traitLikelihood;
public ContinuousTraitBranchRateModel(SampledMultivariateTraitLikelihood traitLikelihood, int dimension) {
super(ContinuousTraitBranchRateModelParser.TRAIT_BRANCH_RATES);
this.traitLikelihood = traitLikelihood;
this.trait = traitLikelihood.getTraitName();
this.dimension = dimension;
this.rateParameter = null;
this.ratioParameter = null;
addModel(traitLikelihood);
}
public ContinuousTraitBranchRateModel(String trait, Parameter rateParameter, Parameter ratioParameter) {
super(ContinuousTraitBranchRateModelParser.TRAIT_BRANCH_RATES);
this.trait = trait;
dimension = 0;
this.rateParameter = rateParameter;
this.ratioParameter = ratioParameter;
if (rateParameter != null) {
addVariable(rateParameter);
}
if (ratioParameter != null) {
addVariable(ratioParameter);
}
}
public void handleModelChangedEvent(Model model, Object object, int index) {
fireModelChanged();
}
protected final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) {
fireModelChanged();
}
protected void storeState() {
}
protected void restoreState() {
}
protected void acceptState() {
}
public double getBranchRate(final Tree tree, final NodeRef node) {
NodeRef parent = tree.getParent(node);
if (parent == null) {
throw new IllegalArgumentException("Root does not have a valid rate");
}
double rate = 1.0;
TreeModel treeModel = (TreeModel) tree;
if (rateParameter != null) {
double scale = 1.0;
double ratio = 1.0;
if (rateParameter != null) {
scale = rateParameter.getParameterValue(0);
}
if (ratioParameter != null) {
ratio = ratioParameter.getParameterValue(0);
}
// get the log rate for the node and its parent
double rate1 = ratio * treeModel.getMultivariateNodeTrait(node, trait)[0];
double rate2 = ratio * treeModel.getMultivariateNodeTrait(parent, trait)[0];
if (rate1 == rate2) {
return scale * Math.exp(rate1);
}
rate = scale * (Math.exp(rate2) - Math.exp(rate1)) / (rate2 - rate1);
} else {
double rate1 = treeModel.getMultivariateNodeTrait(node, trait)[dimension];
double rate2 = treeModel.getMultivariateNodeTrait(parent, trait)[dimension];
if (rate1 == rate2) {
return Math.exp(rate1);
}
rate = (Math.exp(rate2) - Math.exp(rate1)) / (rate2 - rate1); // TODO Should this not be averaged on the log-scale?
}
return rate;
}
}