/* * ExponentialLogistic.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.evolution.coalescent; /** * Exponential growth followed by Logistic growth. * * @author Andrew Rambaut * @author Alexei Drummond * * @version $Id: ConstLogistic.java,v 1.4 2005/04/11 11:43:03 alexei Exp $ * */ public class ExponentialLogistic extends LogisticGrowth { /** * Construct demographic model with default settings */ public ExponentialLogistic(Type units) { super(units); } public double getTime() { return time; } public void setTime(double time) { this.time = time; } public double getR1() { return r1; } public void setR1(double r1) { this.r1 = r1; } // Implementation of abstract methods public double getDemographic(double t) { double transition_time = getTime(); // size of the population under the logistic at transition_time if (t < transition_time) { return super.getDemographic(t); } else { double r1 = getR1(); double N1 = super.getDemographic(transition_time); return N1 * Math.exp(-r1*(t - transition_time)); } } /** * Returns value of demographic intensity function at time t * (= integral 1/N(x) dx from 0 to t). */ public double getIntensity(double t) { throw new RuntimeException("Not implemented!"); } public double getInverseIntensity(double x) { throw new RuntimeException("Not implemented!"); } public double getIntegral(double start, double finish) { //final double v1 = getIntensity(finish) - getIntensity(start); // Until the above getIntensity is implemented, numerically integrate final double numerical = getNumericalIntegral(start, finish); return numerical; } public int getNumArguments() { return 5; } public String getArgumentName(int n) { switch (n) { case 0: return "N0"; case 1: return "r0"; case 2: return "c"; case 3: return "r1"; case 4: return "t1"; } throw new IllegalArgumentException("Argument " + n + " does not exist"); } public double getArgument(int n) { switch (n) { case 0: return getN0(); case 1: return getGrowthRate(); case 2: return getShape(); case 3: return getR1(); case 4: return getTime(); } throw new IllegalArgumentException("Argument " + n + " does not exist"); } public void setArgument(int n, double value) { switch (n) { case 0: setN0(value); break; case 1: setGrowthRate(value); break; case 2: setShape(value); break; case 3: setR1(value); break; case 4: setTime(value); break; default: throw new IllegalArgumentException("Argument " + n + " does not exist"); } } public double getLowerBound(int n) { return 0.0; } public double getUpperBound(int n) { return Double.POSITIVE_INFINITY; } // // private stuff // /** * The transition time between exponential and logistic */ private double time = 0.0; /** * The growth rate of the exponential phase */ private double r1 = 0.0; }