/*
* CTMCScalePrior.java
*
* Copyright (c) 2002-2016 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.evomodel.tree;
import dr.evolution.tree.TreeUtils;
import dr.evomodel.substmodel.SubstitutionModel;
import dr.inference.model.AbstractModelLikelihood;
import dr.inference.model.Model;
import dr.inference.model.Parameter;
import dr.inference.model.Variable;
import dr.math.GammaFunction;
import dr.util.Author;
import dr.util.Citable;
import dr.util.Citation;
import java.util.Collections;
import java.util.List;
/**
* @author Alexander V. Alekseyenko (alexander.alekseyenko@gmail.com)
* @author Marc A. Suchard
* <p/>
* Date: Aug 22, 2008
* Time: 3:26:57 PM
*/
public class CTMCScalePrior extends AbstractModelLikelihood implements Citable {
final private Parameter ctmcScale;
final private TreeModel treeModel;
private double treeLength;
private boolean treeLengthKnown;
final private boolean reciprocal;
final private SubstitutionModel substitutionModel;
final private boolean trial;
private static final double logGammaOneHalf = GammaFunction.lnGamma(0.5);
public CTMCScalePrior(String name, Parameter ctmcScale, TreeModel treeModel) {
this(name, ctmcScale, treeModel, false);
}
public CTMCScalePrior(String name, Parameter ctmcScale, TreeModel treeModel, boolean reciprocal) {
this(name, ctmcScale, treeModel, reciprocal, null);
}
public CTMCScalePrior(String name, Parameter ctmcScale, TreeModel treeModel, boolean reciprocal,
SubstitutionModel substitutionModel) {
this(name, ctmcScale, treeModel, reciprocal, substitutionModel, false);
}
public CTMCScalePrior(String name, Parameter ctmcScale, TreeModel treeModel, boolean reciprocal,
SubstitutionModel substitutionModel, boolean trial) {
super(name);
this.ctmcScale = ctmcScale;
this.treeModel = treeModel;
addModel(treeModel);
treeLengthKnown = false;
this.reciprocal = reciprocal;
this.substitutionModel = substitutionModel;
this.trial = trial;
}
private void updateTreeLength() {
treeLength = TreeUtils.getTreeLength(treeModel, treeModel.getRoot());
}
protected void handleModelChangedEvent(Model model, Object object, int index) {
if (model == treeModel) {
treeLengthKnown = false;
}
}
protected final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) {
}
protected void storeState() {
}
protected void restoreState() {
treeLengthKnown = false;
}
protected void acceptState() {
}
public Model getModel() {
return this;
}
private double calculateTrialLikelihood() {
double totalTreeTime = TreeUtils.getTreeLength(treeModel, treeModel.getRoot());
double[] eigenValues = substitutionModel.getEigenDecomposition().getEigenValues();
// Find second largest
double lambda2 = Double.NEGATIVE_INFINITY;
for (double l : eigenValues) {
if (l > lambda2 && l < 0.0) {
lambda2 = l;
}
}
lambda2 = -lambda2;
double logNormalization = 0.5 * Math.log(lambda2) - logGammaOneHalf;
double logLike = 0;
for (int i = 0; i < ctmcScale.getDimension(); ++i) {
double ab = ctmcScale.getParameterValue(i) * totalTreeTime;
logLike += logNormalization - 0.5 * Math.log(ab) - ab * lambda2;
}
return logLike;
}
public double getLogLikelihood() {
// if (!treeLengthKnown) {
// updateTreeLength();
// treeLengthKnown = true;
// }
// double totalTreeTime = treeLength;
if (trial) return calculateTrialLikelihood();
double totalTreeTime = TreeUtils.getTreeLength(treeModel, treeModel.getRoot());
if (reciprocal) {
totalTreeTime = 1.0 / totalTreeTime;
}
if (substitutionModel != null) {
double[] eigenValues = substitutionModel.getEigenDecomposition().getEigenValues();
// Find second largest
double lambda2 = Double.NEGATIVE_INFINITY;
for (double l : eigenValues) {
if (l > lambda2 && l < 0.0) {
lambda2 = l;
}
}
totalTreeTime *= -lambda2; // TODO Should this be /=?
}
double logNormalization = 0.5 * Math.log(totalTreeTime) - logGammaOneHalf;
double logLike = 0;
for (int i = 0; i < ctmcScale.getDimension(); ++i) {
double ab = ctmcScale.getParameterValue(i);
logLike += logNormalization - 0.5 * Math.log(ab) - ab * totalTreeTime; // TODO Change to treeLength and confirm results
}
return logLike;
}
public void makeDirty() {
treeLengthKnown = false;
}
@Override
public Citation.Category getCategory() {
return Citation.Category.PRIOR_MODELS;
}
@Override
public String getDescription() {
return "CTMC Scale Reference Prior model";
}
@Override
public List<Citation> getCitations() {
return Collections.singletonList(CITATION);
}
public static Citation CITATION = new Citation(
new Author[]{
new Author("MAR", "Ferreira"),
new Author("MA", "Suchard")
},
"Bayesian analysis of elapsed times in continuous-time Markov chains",
2008,
"Canadian Journal of Statistics",
36,
355, 368,
Citation.Status.PUBLISHED
);
}