/* * SVSGeneralSubstitutionModel.java * * Copyright (c) 2002-2016 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.evomodel.substmodel; import dr.evolution.datatype.DataType; import dr.inference.loggers.LogColumn; import dr.inference.loggers.NumberColumn; import dr.inference.model.*; import dr.util.Citable; import dr.util.Citation; import dr.util.CommonCitations; import java.util.*; /** * @author Marc Suchard */ public class SVSGeneralSubstitutionModel extends GeneralSubstitutionModel implements Likelihood, BayesianStochasticSearchVariableSelection, Citable { public SVSGeneralSubstitutionModel(String name, DataType dataType, FrequencyModel freqModel, Parameter ratesParameter, Parameter indicatorsParameter) { super(name, dataType, freqModel, ratesParameter, -1); if (indicatorsParameter == null) { this.indicatorsParameter = new Parameter.Default(ratesParameter.getDimension(), 1.0); } else { this.indicatorsParameter = indicatorsParameter; addVariable(indicatorsParameter); } setupIndicatorDimensionNames(-1); } @Override protected void setupRelativeRates(double[] rates) { for (int i = 0; i < rates.length; i++) { rates[i] = ratesParameter.getParameterValue(i) * indicatorsParameter.getParameterValue(i); } } protected void setupIndicatorDimensionNames(int relativeTo) { List<String> indicatorNames = new ArrayList<String>(); String indicatorPrefix = indicatorsParameter.getParameterName(); for (int i = 0; i < dataType.getStateCount(); ++i) { for (int j = i + 1; j < dataType.getStateCount(); ++j) { indicatorNames.add(getDimensionString(i, j, indicatorPrefix)); } } String[] tmp = new String[0]; indicatorsParameter.setDimensionNames(indicatorNames.toArray(tmp)); } public Parameter getIndicators() { return indicatorsParameter; } public boolean validState() { return !updateMatrix || BayesianStochasticSearchVariableSelection.Utils.connectedAndWellConditioned(probability,this); } protected void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) { if (variable == ratesParameter && indicatorsParameter.getParameterValue(index) == 0) return; // Does not affect likelihood super.handleVariableChangedEvent(variable,index,type); } /** * Get the model. * * @return the model. */ public Model getModel() { return this; } /** * Get the log likelihood. * * @return the log likelihood. */ public double getLogLikelihood() { if (updateMatrix) { if (!BayesianStochasticSearchVariableSelection.Utils.connectedAndWellConditioned(probability,this)) { return Double.NEGATIVE_INFINITY; } } return 0; } /** * Needs to be evaluated before the corresponding data likelihood. * @return */ public boolean evaluateEarly() { return true; } /** * Forces a complete recalculation of the likelihood next time getLikelihood is called */ public void makeDirty() { updateMatrix = true; } /** * @return A detailed name of likelihood for debugging. */ public String prettyName() { return "SVSGeneralSubstitutionModel-connectedness"; } @Override public Set<Likelihood> getLikelihoodSet() { return new HashSet<Likelihood>(Arrays.asList(this)); } @Override public boolean isUsed() { return super.isUsed() && isUsed; } public void setUsed() { isUsed = true; } private boolean isUsed = false; // ************************************************************** // Loggable IMPLEMENTATION // ************************************************************** public LogColumn[] getColumns() { return new LogColumn[]{ new LikelihoodColumn(getId()) }; } @Override public Citation.Category getCategory() { return Citation.Category.SUBSTITUTION_MODELS; } @Override public String getDescription() { return "Stochastic search variable selection, reversible substitution model"; } @Override public List<Citation> getCitations() { return Collections.singletonList(CommonCitations.LEMEY_2009_BAYESIAN); } protected class LikelihoodColumn extends NumberColumn { public LikelihoodColumn(String label) { super(label); } public double getDoubleValue() { return getLogLikelihood(); } } private double[] probability = null; private final Parameter indicatorsParameter; }