/*
* BifractionalDiffusionModel.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.evomodel.continuous;
import dr.inference.model.Parameter;
import dr.inference.model.Variable;
import dr.math.distributions.BifractionalDiffusionDensity;
/**
* @author Marc Suchard
*
*
* Follows a bifractional diffusion model developed in:
* Brockman D, Hufnagel L and Geisel T (2006) The scaling laws of human travel. Nature 439, 462 - 465
*
*
*/
public class BifractionalDiffusionModel extends MultivariateDiffusionModel {
public BifractionalDiffusionModel(Parameter alpha, Parameter beta) {
super();
this.alpha = alpha;
this.beta = beta;
addVariable(alpha);
addVariable(beta);
densityKnown = false;
}
protected double calculateLogDensity(double[] start, double[] stop, double time) {
// Compute finite-time transition probability
// Equation (2) from Brockman, Hufnagel and Geisel (2006)
// final double ratio = alpha.getParameterValue(0) / beta.getParameterValue(0);
// final double r = distanceEuclidean(start, stop);
// final double scaledTime = Math.pow(time,ratio);
// return -ratio * Math.log(time) + logUniversalScalingFunction(r / scaledTime);
double a = alpha.getParameterValue(0);
double b = beta.getParameterValue(0);
double r = distanceEuclidean(start, stop) * scalarDistance;
// a = 2.0
//b = 1.0
//r = 0.3597864505508788
//t = 3.290985204423155E-5
// a = 2.0;
//b = 1.0;
//r = 0.3597864505508788;
//time = 3.290985204423155E-5;
// time = 1;
// System.err.println("a = " + a);
// System.err.println("b = " + b);
// System.err.println("r = " + r);
// System.err.println("t = " + time);
if (!densityKnown) {
setupDensity();
densityKnown = true;
}
// return BifractionalDiffusionDensity.logPdf(r, time, a, b);
double pdf = bifractionalDensity.pdf(r, time * scalarTime);
double logPdf = Math.log(pdf);
if (Double.isNaN(logPdf)) {
System.err.println("a = " + a);
System.err.println("b = " + b);
System.err.println("r = " + r);
System.err.println("t = " + time * scalarTime);
System.err.println("pdf = " + pdf);
System.err.println("logPdf = " + logPdf);
}
return logPdf;
}
private void setupDensity() {
final double a = alpha.getParameterValue(0);
final double b = beta.getParameterValue(0);
bifractionalDensity = new BifractionalDiffusionDensity(a, b);
}
protected void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) {
super.handleVariableChangedEvent(variable, index, type);
if (variable == alpha || variable == beta) {
densityKnown = false;
}
}
private double distanceEuclidean(double[] start, double[] stop) {
final int dim = start.length;
double total = 0;
for(int i=0; i<dim; i++) {
final double dX = stop[i] - start[i];
total += dX*dX;
}
return Math.sqrt(total);
}
// private double logUniversalScalingFunction(double x) {
// return x - x;
// }
protected void calculatePrecisionInfo() {
// Precompute normalizing constants if necessary
}
protected void restoreState() {
super.restoreState();
densityKnown = false;
}
private Parameter alpha;
private Parameter beta;
private BifractionalDiffusionDensity bifractionalDensity;
private boolean densityKnown;
private double scalarDistance = 10E-3;
private double scalarTime = 10E+3;
}