/* * MultivariateNormalOperator.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.inference.operators; import cern.colt.matrix.impl.DenseDoubleMatrix2D; import cern.colt.matrix.linalg.SingularValueDecomposition; import dr.inference.model.MatrixParameter; import dr.inference.model.Parameter; import dr.math.MathUtils; import dr.math.matrixAlgebra.CholeskyDecomposition; import dr.math.matrixAlgebra.IllegalDimension; import dr.math.matrixAlgebra.SymmetricMatrix; import dr.xml.*; /** * @author Marc Suchard */ public class ModeIndependenceOperator extends AbstractCoercableOperator { public static final String MVN_OPERATOR = "modeIndependenceOperator"; public static final String SCALE_FACTOR = "scaleFactor"; public static final String VARIANCE_MATRIX = "varMatrix"; public static final String FORM_XTX = "formXtXInverse"; private double scaleFactor; private final Parameter parameter; private final int dim; private double[][] cholesky; public ModeIndependenceOperator(Parameter parameter, double scaleFactor, double[][] inMatrix, double weight, CoercionMode mode, boolean isVarianceMatrix) { super(mode); this.scaleFactor = scaleFactor; this.parameter = parameter; setWeight(weight); dim = parameter.getDimension(); SingularValueDecomposition svd = new SingularValueDecomposition(new DenseDoubleMatrix2D(inMatrix)); if (inMatrix[0].length != svd.rank()) { throw new RuntimeException("Variance matrix in mvnOperator is not of full rank"); } final double[][] matrix; if (isVarianceMatrix) { matrix = inMatrix; } else { matrix = formXtXInverse(inMatrix); } // System.err.println("Matrix:"); // System.err.println(new Matrix(matrix)); try { cholesky = (new CholeskyDecomposition(matrix)).getL(); } catch (IllegalDimension illegalDimension) { throw new RuntimeException("Unable to decompose matrix in mvnOperator"); } // System.err.println("Cholesky:"); // System.err.println(new Matrix(cholesky)); // System.exit(-1); } public ModeIndependenceOperator(Parameter parameter, double scaleFactor, MatrixParameter varMatrix, double weight, CoercionMode mode, boolean isVariance) { this(parameter, scaleFactor, varMatrix.getParameterAsMatrix(), weight, mode, isVariance); } private double[][] formXtXInverse(double[][] X) { int N = X.length; int P = X[0].length; double[][] matrix = new double[P][P]; for (int i = 0; i < P; i++) { for (int j = 0; j < P; j++) { double total = 0.0; for (int k = 0; k < N; k++) { total += X[k][i] * X[k][j]; } matrix[i][j] = total; } } // System.err.println("XtX:"); // System.err.println(new Matrix(matrix)); // Take inverse matrix = new SymmetricMatrix(matrix).inverse().toComponents(); return matrix; } public double doOperation() { double[] x = parameter.getParameterValues(); double[] epsilon = new double[dim]; //double[] y = new double[dim]; for (int i = 0; i < dim; i++) epsilon[i] = scaleFactor * MathUtils.nextGaussian(); for (int i = 0; i < dim; i++) { for (int j = i; j < dim; j++) { x[i] += cholesky[j][i] * epsilon[j]; // caution: decomposition returns lower triangular } parameter.setParameterValueQuietly(i, x[i]); // System.out.println(i+" : "+x[i]); } parameter.fireParameterChangedEvent(); // System.exit(-1); return 0; } //MCMCOperator INTERFACE public final String getOperatorName() { return parameter.getParameterName(); } public double getCoercableParameter() { return Math.log(scaleFactor); } public void setCoercableParameter(double value) { scaleFactor = Math.exp(value); } public double getRawParameter() { return scaleFactor; } public double getScaleFactor() { return scaleFactor; } public double getTargetAcceptanceProbability() { return 0.234; } public double getMinimumAcceptanceLevel() { return 0.1; } public double getMaximumAcceptanceLevel() { return 0.4; } public double getMinimumGoodAcceptanceLevel() { return 0.20; } public double getMaximumGoodAcceptanceLevel() { return 0.30; } public final String getPerformanceSuggestion() { double prob = Utils.getAcceptanceProbability(this); double targetProb = getTargetAcceptanceProbability(); dr.util.NumberFormatter formatter = new dr.util.NumberFormatter(5); double sf = OperatorUtils.optimizeWindowSize(scaleFactor, prob, targetProb); if (prob < getMinimumGoodAcceptanceLevel()) { return "Try setting scaleFactor to about " + formatter.format(sf); } else if (prob > getMaximumGoodAcceptanceLevel()) { return "Try setting scaleFactor to about " + formatter.format(sf); } else return ""; } public static XMLObjectParser PARSER = new AbstractXMLObjectParser() { public String getParserName() { return MVN_OPERATOR; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { CoercionMode mode = CoercionMode.parseMode(xo); double weight = xo.getDoubleAttribute(WEIGHT); double scaleFactor = xo.getDoubleAttribute(SCALE_FACTOR); if (scaleFactor <= 0.0) { throw new XMLParseException("scaleFactor must be greater than 0.0"); } Parameter parameter = (Parameter) xo.getChild(Parameter.class); boolean formXtXInverse = xo.getAttribute(FORM_XTX, false); XMLObject cxo = xo.getChild(VARIANCE_MATRIX); MatrixParameter varMatrix = (MatrixParameter) cxo.getChild(MatrixParameter.class); // Make sure varMatrix is square and dim(varMatrix) = dim(parameter) if (!formXtXInverse) { if (varMatrix.getColumnDimension() != varMatrix.getRowDimension()) throw new XMLParseException("The variance matrix is not square"); } if (varMatrix.getColumnDimension() != parameter.getDimension()) throw new XMLParseException("The parameter and variance matrix have differing dimensions"); return new ModeIndependenceOperator(parameter, scaleFactor, varMatrix, weight, mode, !formXtXInverse); } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public String getParserDescription() { return "This element returns a multivariate normal random walk operator on a given parameter."; } public Class getReturnType() { return MCMCOperator.class; } public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { AttributeRule.newDoubleRule(SCALE_FACTOR), AttributeRule.newDoubleRule(WEIGHT), AttributeRule.newBooleanRule(AUTO_OPTIMIZE, true), AttributeRule.newBooleanRule(FORM_XTX, true), new ElementRule(Parameter.class), new ElementRule(VARIANCE_MATRIX, new XMLSyntaxRule[]{new ElementRule(MatrixParameter.class)}) }; }; }