/*
* MultivariateNormalOperator.java
*
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.inference.operators;
import cern.colt.matrix.impl.DenseDoubleMatrix2D;
import cern.colt.matrix.linalg.SingularValueDecomposition;
import dr.inference.model.MatrixParameter;
import dr.inference.model.Parameter;
import dr.math.MathUtils;
import dr.math.matrixAlgebra.CholeskyDecomposition;
import dr.math.matrixAlgebra.IllegalDimension;
import dr.math.matrixAlgebra.SymmetricMatrix;
import dr.xml.*;
/**
* @author Marc Suchard
*/
public class ModeIndependenceOperator extends AbstractCoercableOperator {
public static final String MVN_OPERATOR = "modeIndependenceOperator";
public static final String SCALE_FACTOR = "scaleFactor";
public static final String VARIANCE_MATRIX = "varMatrix";
public static final String FORM_XTX = "formXtXInverse";
private double scaleFactor;
private final Parameter parameter;
private final int dim;
private double[][] cholesky;
public ModeIndependenceOperator(Parameter parameter, double scaleFactor, double[][] inMatrix, double weight,
CoercionMode mode, boolean isVarianceMatrix) {
super(mode);
this.scaleFactor = scaleFactor;
this.parameter = parameter;
setWeight(weight);
dim = parameter.getDimension();
SingularValueDecomposition svd = new SingularValueDecomposition(new DenseDoubleMatrix2D(inMatrix));
if (inMatrix[0].length != svd.rank()) {
throw new RuntimeException("Variance matrix in mvnOperator is not of full rank");
}
final double[][] matrix;
if (isVarianceMatrix) {
matrix = inMatrix;
} else {
matrix = formXtXInverse(inMatrix);
}
// System.err.println("Matrix:");
// System.err.println(new Matrix(matrix));
try {
cholesky = (new CholeskyDecomposition(matrix)).getL();
} catch (IllegalDimension illegalDimension) {
throw new RuntimeException("Unable to decompose matrix in mvnOperator");
}
// System.err.println("Cholesky:");
// System.err.println(new Matrix(cholesky));
// System.exit(-1);
}
public ModeIndependenceOperator(Parameter parameter, double scaleFactor,
MatrixParameter varMatrix, double weight, CoercionMode mode, boolean isVariance) {
this(parameter, scaleFactor, varMatrix.getParameterAsMatrix(), weight, mode, isVariance);
}
private double[][] formXtXInverse(double[][] X) {
int N = X.length;
int P = X[0].length;
double[][] matrix = new double[P][P];
for (int i = 0; i < P; i++) {
for (int j = 0; j < P; j++) {
double total = 0.0;
for (int k = 0; k < N; k++) {
total += X[k][i] * X[k][j];
}
matrix[i][j] = total;
}
}
// System.err.println("XtX:");
// System.err.println(new Matrix(matrix));
// Take inverse
matrix = new SymmetricMatrix(matrix).inverse().toComponents();
return matrix;
}
public double doOperation() {
double[] x = parameter.getParameterValues();
double[] epsilon = new double[dim];
//double[] y = new double[dim];
for (int i = 0; i < dim; i++)
epsilon[i] = scaleFactor * MathUtils.nextGaussian();
for (int i = 0; i < dim; i++) {
for (int j = i; j < dim; j++) {
x[i] += cholesky[j][i] * epsilon[j];
// caution: decomposition returns lower triangular
}
parameter.setParameterValueQuietly(i, x[i]);
// System.out.println(i+" : "+x[i]);
}
parameter.fireParameterChangedEvent();
// System.exit(-1);
return 0;
}
//MCMCOperator INTERFACE
public final String getOperatorName() {
return parameter.getParameterName();
}
public double getCoercableParameter() {
return Math.log(scaleFactor);
}
public void setCoercableParameter(double value) {
scaleFactor = Math.exp(value);
}
public double getRawParameter() {
return scaleFactor;
}
public double getScaleFactor() {
return scaleFactor;
}
public double getTargetAcceptanceProbability() {
return 0.234;
}
public double getMinimumAcceptanceLevel() {
return 0.1;
}
public double getMaximumAcceptanceLevel() {
return 0.4;
}
public double getMinimumGoodAcceptanceLevel() {
return 0.20;
}
public double getMaximumGoodAcceptanceLevel() {
return 0.30;
}
public final String getPerformanceSuggestion() {
double prob = Utils.getAcceptanceProbability(this);
double targetProb = getTargetAcceptanceProbability();
dr.util.NumberFormatter formatter = new dr.util.NumberFormatter(5);
double sf = OperatorUtils.optimizeWindowSize(scaleFactor, prob, targetProb);
if (prob < getMinimumGoodAcceptanceLevel()) {
return "Try setting scaleFactor to about " + formatter.format(sf);
} else if (prob > getMaximumGoodAcceptanceLevel()) {
return "Try setting scaleFactor to about " + formatter.format(sf);
} else return "";
}
public static XMLObjectParser PARSER = new AbstractXMLObjectParser() {
public String getParserName() {
return MVN_OPERATOR;
}
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
CoercionMode mode = CoercionMode.parseMode(xo);
double weight = xo.getDoubleAttribute(WEIGHT);
double scaleFactor = xo.getDoubleAttribute(SCALE_FACTOR);
if (scaleFactor <= 0.0) {
throw new XMLParseException("scaleFactor must be greater than 0.0");
}
Parameter parameter = (Parameter) xo.getChild(Parameter.class);
boolean formXtXInverse = xo.getAttribute(FORM_XTX, false);
XMLObject cxo = xo.getChild(VARIANCE_MATRIX);
MatrixParameter varMatrix = (MatrixParameter) cxo.getChild(MatrixParameter.class);
// Make sure varMatrix is square and dim(varMatrix) = dim(parameter)
if (!formXtXInverse) {
if (varMatrix.getColumnDimension() != varMatrix.getRowDimension())
throw new XMLParseException("The variance matrix is not square");
}
if (varMatrix.getColumnDimension() != parameter.getDimension())
throw new XMLParseException("The parameter and variance matrix have differing dimensions");
return new ModeIndependenceOperator(parameter, scaleFactor, varMatrix, weight, mode, !formXtXInverse);
}
//************************************************************************
// AbstractXMLObjectParser implementation
//************************************************************************
public String getParserDescription() {
return "This element returns a multivariate normal random walk operator on a given parameter.";
}
public Class getReturnType() {
return MCMCOperator.class;
}
public XMLSyntaxRule[] getSyntaxRules() {
return rules;
}
private final XMLSyntaxRule[] rules = {
AttributeRule.newDoubleRule(SCALE_FACTOR),
AttributeRule.newDoubleRule(WEIGHT),
AttributeRule.newBooleanRule(AUTO_OPTIMIZE, true),
AttributeRule.newBooleanRule(FORM_XTX, true),
new ElementRule(Parameter.class),
new ElementRule(VARIANCE_MATRIX,
new XMLSyntaxRule[]{new ElementRule(MatrixParameter.class)})
};
};
}