/* * GibbsIndependentJointNormalGammaOperator.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.inference.operators; import cern.jet.random.Normal; import cern.jet.random.engine.MersenneTwister; import cern.jet.random.engine.RandomEngine; import dr.inference.distribution.NormalDistributionModel; import dr.inference.model.Bounds; import dr.inference.model.Parameter; import dr.inference.model.Variable; import dr.math.MathUtils; import dr.math.distributions.GammaDistribution; import dr.xml.*; /** * An independent joint normal gamma sampler to propose new (independent) values from provided normal and gamma distribution models. * * @author Guy Baele * */ public class GibbsIndependentJointNormalGammaOperator extends SimpleMCMCOperator implements GibbsOperator { public static final String OPERATOR_NAME = "GibbsIndependentJointNormalGammaOperator"; public static final String MEAN = "mean"; public static final String PREC = "precision"; public static final String SHAPE = "shape"; public static final String SCALE = "scale"; private Variable<Double> mean = null; private Variable<Double> precision = null; private NormalDistributionModel model = null; private GammaDistribution gamma = null; private boolean updateAllIndependently = true; private static final boolean TRY_COLT = true; private static final boolean DEBUG = false; private static RandomEngine randomEngine; private static Normal coltNormal; //private static Gamma coltGamma; public GibbsIndependentJointNormalGammaOperator(Variable mean, Variable precision, NormalDistributionModel model, GammaDistribution gamma) { this(mean, precision, model, gamma, 1.0); } public GibbsIndependentJointNormalGammaOperator(Variable mean, Variable precision, NormalDistributionModel model, GammaDistribution gamma, double weight) { this(mean, precision, model, gamma, weight, true); } public GibbsIndependentJointNormalGammaOperator(Variable mean, Variable precision, NormalDistributionModel model, GammaDistribution gamma, double weight, boolean updateAllIndependently) { this.mean = mean; this.precision = precision; this.model = model; this.gamma = gamma; this.updateAllIndependently = updateAllIndependently; setWeight(weight); if (TRY_COLT) { randomEngine = new MersenneTwister(MathUtils.nextInt()); //create standard normal distribution, internal states will be bypassed anyway //takes mean and standard deviation coltNormal = new Normal(0.0, 1.0, randomEngine); //coltGamma = new Gamma(gamma.getShape(), 1.0/gamma.getScale(), randomEngine); } else { //no random draw with specified mean and stdev implemented in the normal distribution in BEAST (as far as I know) throw new RuntimeException("Normal distribution in BEAST still needs a random sampler."); } } public String getPerformanceSuggestion() { return ""; } public String getOperatorName() { return "GibbsIndependentJointNormalGamma(" + mean.getVariableName() + "," + precision.getVariableName() + ")"; } public int getStepCount() { return 1; } /** * change the parameter and return the hastings ratio. */ public double doOperation() { //double logq = 0; //double currentValue; double newValue; final Bounds<Double> meanBounds = mean.getBounds(); final Bounds<Double> precBounds = precision.getBounds(); final int dim = mean.getSize(); if (updateAllIndependently) { for (int i = 0; i < dim; i++) { if (DEBUG) { System.out.println("old precision value: " + precision.getValue(i)); System.out.println("old mean value: " + mean.getValue(i)); System.out.println("model mean check: " + model.getMean().getValue(i)); System.out.println("model precision check: " + model.getPrecision().getValue(i) + "\n"); } //start with updating the precision newValue = gamma.nextGamma(); //newValue = coltGamma.nextDouble(); while (newValue == 0.0) { newValue = gamma.nextGamma(); //newValue = coltGamma.nextDouble(); } if (newValue < precBounds.getLowerLimit(i) || newValue > precBounds.getUpperLimit(i)) { throw new RuntimeException("proposed value from gamma distribution outside boundaries"); } precision.setValue(i, newValue); if (DEBUG) { System.out.println("new precision value: " + precision.getValue(i)); System.out.println("old mean value: " + mean.getValue(i)); System.out.println("model mean check: " + model.getMean().getValue(i)); System.out.println("model precision check: " + model.getPrecision().getValue(i) + "\n"); } //use the current mean and precision (standard deviation) newValue = coltNormal.nextDouble(model.getMean().getValue(i), 1.0 / Math.sqrt(model.getPrecision().getValue(i))); //newValue = (double)model.nextRandom(); //System.out.print("normal distribution model: N(" + model.getMean().getValue(i) + "," + model.getPrecision().getValue(i) + ") "); //System.out.println(1.0 / Math.sqrt(model.getPrecision().getValue(i))); //System.out.println("current value: " + currentValue + " -- new value: " + newValue); //logq += (model.logPdf(currentValue) - model.logPdf(newValue)); if (newValue < meanBounds.getLowerLimit(i) || newValue > meanBounds.getUpperLimit(i)) { throw new RuntimeException("proposed value from normal distribution outside boundaries"); } mean.setValue(i, newValue); if (DEBUG) { System.out.println("new precision value: " + precision.getValue(i)); System.out.println("new mean value: " + mean.getValue(i)); System.out.println("model mean check: " + model.getMean().getValue(i)); System.out.println("model precision check: " + model.getPrecision().getValue(i) + "\n"); } } } //return logq; return 0; } public static dr.xml.XMLObjectParser PARSER = new dr.xml.AbstractXMLObjectParser() { public String getParserName() { return OPERATOR_NAME; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { double weight = xo.getDoubleAttribute(WEIGHT); double shape = xo.getDoubleAttribute(SHAPE); double scale = xo.getDoubleAttribute(SCALE); NormalDistributionModel model = (NormalDistributionModel) xo.getChild(NormalDistributionModel.class); XMLObject cxo = xo.getChild(MEAN); Parameter mean = (Parameter) cxo.getChild(Parameter.class); cxo = xo.getChild(PREC); Parameter precision = (Parameter) cxo.getChild(Parameter.class); return new GibbsIndependentJointNormalGammaOperator(mean, precision, model, new GammaDistribution(shape, scale), weight); } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { AttributeRule.newDoubleRule(WEIGHT), AttributeRule.newDoubleRule(SHAPE), AttributeRule.newDoubleRule(SCALE), new ElementRule(NormalDistributionModel.class), new ElementRule(MEAN, new XMLSyntaxRule[]{new ElementRule(Parameter.class)}), new ElementRule(PREC, new XMLSyntaxRule[]{new ElementRule(Parameter.class)}) }; public String getParserDescription() { return "This element returns an independence sampler, disguised as a Gibbs operator, from provided normal and gamma distributions."; } public Class getReturnType() { return MCMCOperator.class; } }; }