package net.minecraft.util;
import cpw.mods.fml.relauncher.Side;
import cpw.mods.fml.relauncher.SideOnly;
import java.util.Random;
public class MathHelper
{
/** A table of sin values computed from 0 (inclusive) to 2*pi (exclusive), with steps of 2*PI / 65536. */
private static float[] SIN_TABLE = new float[65536];
/**
* Though it looks like an array, this is really more like a mapping. Key (index of this array) is the upper 5 bits
* of the result of multiplying a 32-bit unsigned integer by the B(2, 5) De Bruijn sequence 0x077CB531. Value
* (value stored in the array) is the unique index (from the right) of the leftmost one-bit in a 32-bit unsigned
* integer that can cause the upper 5 bits to get that value. Used for highly optimized "find the log-base-2 of
* this number" calculations.
*/
private static final int[] multiplyDeBruijnBitPosition;
private static final String __OBFID = "CL_00001496";
/**
* sin looked up in a table
*/
public static final float sin(float p_76126_0_)
{
return SIN_TABLE[(int)(p_76126_0_ * 10430.378F) & 65535];
}
/**
* cos looked up in the sin table with the appropriate offset
*/
public static final float cos(float p_76134_0_)
{
return SIN_TABLE[(int)(p_76134_0_ * 10430.378F + 16384.0F) & 65535];
}
public static final float sqrt_float(float p_76129_0_)
{
return (float)Math.sqrt((double)p_76129_0_);
}
public static final float sqrt_double(double p_76133_0_)
{
return (float)Math.sqrt(p_76133_0_);
}
/**
* Returns the greatest integer less than or equal to the float argument
*/
public static int floor_float(float p_76141_0_)
{
int i = (int)p_76141_0_;
return p_76141_0_ < (float)i ? i - 1 : i;
}
/**
* returns par0 cast as an int, and no greater than Integer.MAX_VALUE-1024
*/
@SideOnly(Side.CLIENT)
public static int truncateDoubleToInt(double p_76140_0_)
{
return (int)(p_76140_0_ + 1024.0D) - 1024;
}
/**
* Returns the greatest integer less than or equal to the double argument
*/
public static int floor_double(double p_76128_0_)
{
int i = (int)p_76128_0_;
return p_76128_0_ < (double)i ? i - 1 : i;
}
/**
* Long version of floor_double
*/
public static long floor_double_long(double p_76124_0_)
{
long i = (long)p_76124_0_;
return p_76124_0_ < (double)i ? i - 1L : i;
}
@SideOnly(Side.CLIENT)
public static int func_154353_e(double p_154353_0_)
{
return (int)(p_154353_0_ >= 0.0D ? p_154353_0_ : -p_154353_0_ + 1.0D);
}
public static float abs(float p_76135_0_)
{
return p_76135_0_ >= 0.0F ? p_76135_0_ : -p_76135_0_;
}
/**
* Returns the unsigned value of an int.
*/
public static int abs_int(int p_76130_0_)
{
return p_76130_0_ >= 0 ? p_76130_0_ : -p_76130_0_;
}
public static int ceiling_float_int(float p_76123_0_)
{
int i = (int)p_76123_0_;
return p_76123_0_ > (float)i ? i + 1 : i;
}
public static int ceiling_double_int(double p_76143_0_)
{
int i = (int)p_76143_0_;
return p_76143_0_ > (double)i ? i + 1 : i;
}
/**
* Returns the value of the first parameter, clamped to be within the lower and upper limits given by the second and
* third parameters.
*/
public static int clamp_int(int p_76125_0_, int p_76125_1_, int p_76125_2_)
{
return p_76125_0_ < p_76125_1_ ? p_76125_1_ : (p_76125_0_ > p_76125_2_ ? p_76125_2_ : p_76125_0_);
}
/**
* Returns the value of the first parameter, clamped to be within the lower and upper limits given by the second and
* third parameters
*/
public static float clamp_float(float p_76131_0_, float p_76131_1_, float p_76131_2_)
{
return p_76131_0_ < p_76131_1_ ? p_76131_1_ : (p_76131_0_ > p_76131_2_ ? p_76131_2_ : p_76131_0_);
}
public static double clamp_double(double p_151237_0_, double p_151237_2_, double p_151237_4_)
{
return p_151237_0_ < p_151237_2_ ? p_151237_2_ : (p_151237_0_ > p_151237_4_ ? p_151237_4_ : p_151237_0_);
}
public static double denormalizeClamp(double p_151238_0_, double p_151238_2_, double p_151238_4_)
{
return p_151238_4_ < 0.0D ? p_151238_0_ : (p_151238_4_ > 1.0D ? p_151238_2_ : p_151238_0_ + (p_151238_2_ - p_151238_0_) * p_151238_4_);
}
/**
* Maximum of the absolute value of two numbers.
*/
public static double abs_max(double p_76132_0_, double p_76132_2_)
{
if (p_76132_0_ < 0.0D)
{
p_76132_0_ = -p_76132_0_;
}
if (p_76132_2_ < 0.0D)
{
p_76132_2_ = -p_76132_2_;
}
return p_76132_0_ > p_76132_2_ ? p_76132_0_ : p_76132_2_;
}
/**
* Buckets an integer with specifed bucket sizes. Args: i, bucketSize
*/
@SideOnly(Side.CLIENT)
public static int bucketInt(int p_76137_0_, int p_76137_1_)
{
return p_76137_0_ < 0 ? -((-p_76137_0_ - 1) / p_76137_1_) - 1 : p_76137_0_ / p_76137_1_;
}
/**
* Tests if a string is null or of length zero
*/
@SideOnly(Side.CLIENT)
public static boolean stringNullOrLengthZero(String p_76139_0_)
{
return p_76139_0_ == null || p_76139_0_.length() == 0;
}
public static int getRandomIntegerInRange(Random p_76136_0_, int p_76136_1_, int p_76136_2_)
{
return p_76136_1_ >= p_76136_2_ ? p_76136_1_ : p_76136_0_.nextInt(p_76136_2_ - p_76136_1_ + 1) + p_76136_1_;
}
public static float randomFloatClamp(Random p_151240_0_, float p_151240_1_, float p_151240_2_)
{
return p_151240_1_ >= p_151240_2_ ? p_151240_1_ : p_151240_0_.nextFloat() * (p_151240_2_ - p_151240_1_) + p_151240_1_;
}
public static double getRandomDoubleInRange(Random p_82716_0_, double p_82716_1_, double p_82716_3_)
{
return p_82716_1_ >= p_82716_3_ ? p_82716_1_ : p_82716_0_.nextDouble() * (p_82716_3_ - p_82716_1_) + p_82716_1_;
}
public static double average(long[] p_76127_0_)
{
long i = 0L;
long[] along1 = p_76127_0_;
int j = p_76127_0_.length;
for (int k = 0; k < j; ++k)
{
long l = along1[k];
i += l;
}
return (double)i / (double)p_76127_0_.length;
}
/**
* the angle is reduced to an angle between -180 and +180 by mod, and a 360 check
*/
public static float wrapAngleTo180_float(float p_76142_0_)
{
p_76142_0_ %= 360.0F;
if (p_76142_0_ >= 180.0F)
{
p_76142_0_ -= 360.0F;
}
if (p_76142_0_ < -180.0F)
{
p_76142_0_ += 360.0F;
}
return p_76142_0_;
}
/**
* the angle is reduced to an angle between -180 and +180 by mod, and a 360 check
*/
public static double wrapAngleTo180_double(double p_76138_0_)
{
p_76138_0_ %= 360.0D;
if (p_76138_0_ >= 180.0D)
{
p_76138_0_ -= 360.0D;
}
if (p_76138_0_ < -180.0D)
{
p_76138_0_ += 360.0D;
}
return p_76138_0_;
}
/**
* parses the string as integer or returns the second parameter if it fails
*/
public static int parseIntWithDefault(String p_82715_0_, int p_82715_1_)
{
int j = p_82715_1_;
try
{
j = Integer.parseInt(p_82715_0_);
}
catch (Throwable throwable)
{
;
}
return j;
}
/**
* parses the string as integer or returns the second parameter if it fails. this value is capped to par2
*/
public static int parseIntWithDefaultAndMax(String p_82714_0_, int p_82714_1_, int p_82714_2_)
{
int k = p_82714_1_;
try
{
k = Integer.parseInt(p_82714_0_);
}
catch (Throwable throwable)
{
;
}
if (k < p_82714_2_)
{
k = p_82714_2_;
}
return k;
}
/**
* parses the string as double or returns the second parameter if it fails.
*/
public static double parseDoubleWithDefault(String p_82712_0_, double p_82712_1_)
{
double d1 = p_82712_1_;
try
{
d1 = Double.parseDouble(p_82712_0_);
}
catch (Throwable throwable)
{
;
}
return d1;
}
public static double parseDoubleWithDefaultAndMax(String p_82713_0_, double p_82713_1_, double p_82713_3_)
{
double d2 = p_82713_1_;
try
{
d2 = Double.parseDouble(p_82713_0_);
}
catch (Throwable throwable)
{
;
}
if (d2 < p_82713_3_)
{
d2 = p_82713_3_;
}
return d2;
}
/**
* Returns the input value rounded up to the next highest power of two.
*/
@SideOnly(Side.CLIENT)
public static int roundUpToPowerOfTwo(int p_151236_0_)
{
int j = p_151236_0_ - 1;
j |= j >> 1;
j |= j >> 2;
j |= j >> 4;
j |= j >> 8;
j |= j >> 16;
return j + 1;
}
/**
* Is the given value a power of two? (1, 2, 4, 8, 16, ...)
*/
@SideOnly(Side.CLIENT)
private static boolean isPowerOfTwo(int p_151235_0_)
{
return p_151235_0_ != 0 && (p_151235_0_ & p_151235_0_ - 1) == 0;
}
/**
* Uses a B(2, 5) De Bruijn sequence and a lookup table to efficiently calculate the log-base-two of the given
* value. Optimized for cases where the input value is a power-of-two. If the input value is not a power-of-two,
* then subtract 1 from the return value.
*/
@SideOnly(Side.CLIENT)
private static int calculateLogBaseTwoDeBruijn(int p_151241_0_)
{
p_151241_0_ = isPowerOfTwo(p_151241_0_) ? p_151241_0_ : roundUpToPowerOfTwo(p_151241_0_);
return multiplyDeBruijnBitPosition[(int)((long)p_151241_0_ * 125613361L >> 27) & 31];
}
/**
* Efficiently calculates the floor of the base-2 log of an integer value. This is effectively the index of the
* highest bit that is set. For example, if the number in binary is 0...100101, this will return 5.
*/
@SideOnly(Side.CLIENT)
public static int calculateLogBaseTwo(int p_151239_0_)
{
/**
* Uses a B(2, 5) De Bruijn sequence and a lookup table to efficiently calculate the log-base-two of the given
* value. Optimized for cases where the input value is a power-of-two. If the input value is not a power-of-
* two, then subtract 1 from the return value.
*/
return calculateLogBaseTwoDeBruijn(p_151239_0_) - (isPowerOfTwo(p_151239_0_) ? 0 : 1);
}
@SideOnly(Side.CLIENT)
public static int func_154354_b(int p_154354_0_, int p_154354_1_)
{
if (p_154354_1_ == 0)
{
return 0;
}
else
{
if (p_154354_0_ < 0)
{
p_154354_1_ *= -1;
}
int k = p_154354_0_ % p_154354_1_;
return k == 0 ? p_154354_0_ : p_154354_0_ + p_154354_1_ - k;
}
}
static
{
for (int var0 = 0; var0 < 65536; ++var0)
{
SIN_TABLE[var0] = (float)Math.sin((double)var0 * Math.PI * 2.0D / 65536.0D);
}
multiplyDeBruijnBitPosition = new int[] {0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9};
}
}