package edu.stanford.rsl.tutorial.motion.estimation;
import edu.stanford.rsl.conrad.data.numeric.Grid1D;
import edu.stanford.rsl.conrad.data.numeric.Grid1DComplex;
import edu.stanford.rsl.conrad.data.numeric.Grid2D;
import edu.stanford.rsl.conrad.data.numeric.Grid3D;
import edu.stanford.rsl.conrad.utils.FFTUtil;
import edu.stanford.rsl.conrad.utils.VisualizationUtil;
import edu.stanford.rsl.tutorial.filters.GridKernel;
/**
* This class implements the 1-D version of a smoothing kernel (1 1 1)
* @author Marco Boegel
*
*/
public class SmoothKernel1D extends Grid1DComplex implements GridKernel {
private int width = 0;
/**
*
* @param size
* @param width odd number!
*/
public SmoothKernel1D(final int size,int width) {
super(FFTUtil.getNextPowerOfTwo(size));
this.width = width;
final int paddedSize = getSize()[0];
for (int i = 0; i < paddedSize / 2; ++i) {
setAtIndex(i, 0 );
}
for (int i = paddedSize / 2; i < paddedSize ; ++i) {
setAtIndex(i, 0);
}
for(int i = 0; i <= width/2; i++) {
setAtIndex(i, 1.f/width);
}
for(int i = 1; i <= width/2;i++) {
setAtIndex(paddedSize-i, 1.f/width);
}
transformForward();
}
public Grid1D paddGrid(Grid1D input, int width) {
Grid1D out = new Grid1D(input.getSize()[0]+width);
int size = input.getSize()[0];
for(int i = 0 ; i < width/2; i++) {
out.setAtIndex(i, input.getAtIndex(0));
}
for(int i = width/2; i < width/2+size; i++) {
out.setAtIndex(i, input.getAtIndex(i-width/2));
}
for(int i = width/2+size; i<size+width; i++) {
out.setAtIndex(i, input.getAtIndex(size-1));
}
return out;
}
/**
* This method implements the Convolution in Fourier Space for a 1-D Grid.
* @param input 1-D Image
*/
public void applyToGrid(Grid1D input) {
Grid1D paddedInput = paddGrid(input, width);
Grid1DComplex subGrid = new Grid1DComplex(paddedInput);
int size = subGrid.getSize()[0];
subGrid.transformForward();
for (int idx = 0; idx < size; ++idx) {
subGrid.multiplyAtIndex(idx, getRealAtIndex(idx),
getImagAtIndex(idx));
}
subGrid.transformInverse();
Grid1D filteredSinoSub = subGrid.getRealSubGrid(width/2, input.getSize()[0]);
for(int i = 0 ; i < input.getSize()[0]; i++) {
input.setAtIndex(i, filteredSinoSub.getAtIndex(i));
}
}
/**
* This method implements the Convolution with a 2-D Image by applying the Filter to each 1-D subgrid.
* @param input 2-D Image
*/
public void applyToGrid(Grid2D input) {
int iter = input.getSize()[1];
for(int i = 0; i < iter; i++) {
applyToGrid(input.getSubGrid(i));
}
}
/**
* This method implements the Convolution with a 3-D Image by applying the Filter recursively to each 2-D subgrid.
* @param input 3-D Image
*/
public void applyToGrid(Grid3D input) {
int iter = input.getSize()[2];
for(int i = 0; i < iter; i++) {
applyToGrid(input.getSubGrid(i));
}
}
public final static void main(String[] args) {
final int size = 200;
SmoothKernel1D r = new SmoothKernel1D(size,9);
Grid1D in = new Grid1D(new float[size]);
for(int i= 0 ; i < size; i++) in.setAtIndex(i, 0);
int k = 30;
for(int i = 0; i< size/2; i++) {
in.setAtIndex(i, k);
}
for(int i = size/2; i < 5*size/8; i++) {
in.setAtIndex(i, k);
}
VisualizationUtil.createPlot("before",in.getBuffer()).show();
VisualizationUtil.createPlot("Filter",r.getSubGrid(0, FFTUtil.getNextPowerOfTwo(size)).getBuffer()).show();
r.applyToGrid(in);
VisualizationUtil.createPlot("after",in.getBuffer()).show();
}
}
/*
* Copyright (C) 2010-2014 Marco B�gel
* CONRAD is developed as an Open Source project under the GNU General Public License (GPL).
*/