package edu.stanford.rsl.tutorial.atract;
import ij.ImageJ;
import edu.stanford.rsl.conrad.data.numeric.Grid2D;
import edu.stanford.rsl.tutorial.filters.RamLakKernel;
import edu.stanford.rsl.tutorial.parallel.ParallelBackprojector2D;
import edu.stanford.rsl.tutorial.parallel.ParallelProjector2D;
import edu.stanford.rsl.tutorial.phantoms.DotsGrid2D;
import edu.stanford.rsl.tutorial.phantoms.MickeyMouseGrid2D;
import edu.stanford.rsl.tutorial.phantoms.Phantom;
import edu.stanford.rsl.tutorial.phantoms.TestObject1;
import edu.stanford.rsl.tutorial.phantoms.UniformCircleGrid2D;
public class AtractExample {
/**
* @param args
*/
public static void main(String[] args) {
// sinogram params
double maxTheta=Math.PI, // [rad]
deltaTheta=Math.PI/360, // [rad]
maxS=300, // [mm]
deltaS=1.0; // [mm]
// image params
int imgSzXMM = 200, // [mm]
imgSzYMM = imgSzXMM; // [mm]
float pxSzXMM = 1.0f, // [mm]
pxSzYMM = pxSzXMM; // [mm]
int maxSIndex = (int) (maxS / deltaS + 1);
int maxThetaIndex = (int) (maxTheta / deltaTheta + 1);
//float focalLength = 400, maxBeta = (float) Math.PI*2, deltaBeta = maxBeta / 200, maxT = 200, deltaT = 1;
int phantomType = 1; // 0 = circle, 1 = MickeyMouse, 2 = TestObject1,
// 3=DotsGrid
// size in grid units
int imgSzXGU = (int) Math.floor(imgSzXMM / pxSzXMM), // [GU]
imgSzYGU = (int) Math.floor(imgSzYMM / pxSzYMM); // [GU]
new ImageJ();
// image object
Phantom phantom;
switch (phantomType) {
case 0:
phantom = new UniformCircleGrid2D(imgSzXGU, imgSzYGU);
break;
case 1:
phantom = new MickeyMouseGrid2D(imgSzXGU, imgSzYGU);
break;
case 2:
phantom = new TestObject1(imgSzXGU, imgSzYGU);
break;
case 3:
phantom = new DotsGrid2D(imgSzXGU, imgSzYGU);
break;
default:
phantom = new UniformCircleGrid2D(imgSzXGU, imgSzYGU);
break;
}
phantom.setSpacing(pxSzXMM, pxSzYMM);
// origin is given in (negative) world coordinates
phantom.setOrigin(-(imgSzXGU * phantom.getSpacing()[0]) / 2.0,
-(imgSzYGU * phantom.getSpacing()[1]) / 2.0);
phantom.show();
Grid2D grid = phantom;
// create projections
ParallelProjector2D projector = new ParallelProjector2D(maxTheta, deltaTheta, maxS, deltaS);
Grid2D sinoRay = projector.projectRayDriven(grid);
sinoRay.show("Sinogram");
// Apply constant kollimator here
Kollimator koll = new Kollimator(maxThetaIndex, maxSIndex);
koll.applyToGrid(sinoRay, 100);
Grid2D sinoWithoutATRACT = new Grid2D(sinoRay);
sinoRay.show("Sinogram after Kollimation");
// Apply ATRACT filter
AtractFilter1D at = new AtractFilter1D();
at.applyToGrid(sinoRay);
// Apply RamLak filter
RamLakKernel ramLak = new RamLakKernel((int) (maxS / deltaS),
deltaS);
for (int theta = 0; theta < sinoWithoutATRACT.getSize()[0]; ++theta) {
ramLak.applyToGrid(sinoWithoutATRACT.getSubGrid(theta));
}
// Backproject with ATRACT
ParallelBackprojector2D bp = new ParallelBackprojector2D(imgSzXMM, imgSzYMM, pxSzXMM, pxSzYMM);
Grid2D reconWithATRACT = bp.backprojectRayDriven(sinoRay);
reconWithATRACT.show("Reconstruction with ATRACT");
// Backproject without ATRACT
Grid2D reconWithoutATRACT = bp.backprojectRayDriven(sinoWithoutATRACT);
reconWithoutATRACT.show("Reconstruction with RamLak");
}
}
/*
* Copyright (C) 2010-2014 Marco B�gel
* CONRAD is developed as an Open Source project under the GNU General Public License (GPL).
*/