package edu.stanford.rsl.tutorial.fan;
import ij.ImageJ;
import edu.stanford.rsl.conrad.data.numeric.Grid2D;
import edu.stanford.rsl.conrad.data.numeric.NumericGrid;
import edu.stanford.rsl.conrad.data.numeric.NumericPointwiseOperators;
import edu.stanford.rsl.tutorial.fan.FanBeamBackprojector2D;
import edu.stanford.rsl.tutorial.fan.FanBeamProjector2D;
import edu.stanford.rsl.tutorial.fan.redundancy.BinaryWeights;
import edu.stanford.rsl.tutorial.fan.redundancy.CompensationWeights;
import edu.stanford.rsl.tutorial.fan.redundancy.ParkerWeights;
import edu.stanford.rsl.tutorial.fan.redundancy.SilverWeights;
import edu.stanford.rsl.tutorial.filters.RamLakKernel;
import edu.stanford.rsl.tutorial.phantoms.DotsGrid2D;
import edu.stanford.rsl.tutorial.phantoms.MickeyMouseGrid2D;
import edu.stanford.rsl.tutorial.phantoms.Phantom;
import edu.stanford.rsl.tutorial.phantoms.TestObject1;
import edu.stanford.rsl.tutorial.phantoms.UniformCircleGrid2D;
/**
* Simple example that computes and displays a reconstruction.
*
* @author Recopra Seminar Summer 2012
*
*/
public class FanBeamReconstructionExample {
/**
* @param args
*/
public static void main(String[] args) {
// image params
int imgSzXMM = 512, // [mm]
imgSzYMM = imgSzXMM; // [mm]
float pxSzXMM = 1.0f, // [mm]
pxSzYMM = pxSzXMM; // [mm]
// fan beam bp parameters
double gammaM = 11.768288932020647*Math.PI/180,
maxT = 500,
deltaT = 1.0,
focalLength = (maxT/2.0-0.5)*deltaT/Math.tan(gammaM),
maxBeta = 285.95*Math.PI/180,//+gammaM*2,
deltaBeta = maxBeta / 132;
System.out.println(gammaM*180/Math.PI);
int phantomType = 0; // 0 = circle, 1 = MickeyMouse, 2 = TestObject1,
// 3=DotsGrid
// size in grid units
int imgSzXGU = (int) Math.floor(imgSzXMM / pxSzXMM), // [GU]
imgSzYGU = (int) Math.floor(imgSzYMM / pxSzYMM); // [GU]
new ImageJ();
FanBeamProjector2D fanBeamProjector = new FanBeamProjector2D(
focalLength, maxBeta, deltaBeta, maxT, deltaT);
Phantom phantom;
switch (phantomType) {
case 0:
phantom = new UniformCircleGrid2D(imgSzXGU, imgSzYGU);
break;
case 1:
phantom = new MickeyMouseGrid2D(imgSzXGU, imgSzYGU);
break;
case 2:
phantom = new TestObject1(imgSzXGU, imgSzYGU);
break;
case 3:
phantom = new DotsGrid2D(imgSzXGU, imgSzYGU);
break;
default:
phantom = new UniformCircleGrid2D(imgSzXGU, imgSzYGU);
break;
}
phantom.setSpacing(pxSzXMM, pxSzYMM);
// origin is given in (negative) world coordinates
phantom.setOrigin(-(imgSzXGU * phantom.getSpacing()[0]) / 2, -(imgSzYGU * phantom.getSpacing()[1]) / 2);
//phantom.setOrigin(-50.0, -50.0);
phantom.show();
Grid2D projectionP = new Grid2D(phantom);
for (int iter =0; iter < 1; iter ++) {
// create projections
Grid2D fanBeamSinoRay = fanBeamProjector.projectRayDrivenCL(projectionP);
fanBeamSinoRay.clone().show("Sinogram");
int weightType = 0;
Grid2D RedundancyWeights;
switch (weightType) {
case 0:
RedundancyWeights = new ParkerWeights(focalLength, maxT, deltaT, maxBeta, deltaBeta);
break;
case 1:
RedundancyWeights = new SilverWeights(focalLength, maxT, deltaT, maxBeta, deltaBeta);
break;
case 2:
RedundancyWeights = new CompensationWeights(focalLength, maxT, deltaT, maxBeta, deltaBeta);
break;
case 3:
RedundancyWeights = new BinaryWeights(focalLength, maxT, deltaT, maxBeta, deltaBeta);
break;
default:
RedundancyWeights = new CompensationWeights(focalLength, maxT, deltaT, maxBeta, deltaBeta);
}
RedundancyWeights.show("Current Weight");
NumericPointwiseOperators.multiplyBy(fanBeamSinoRay, RedundancyWeights);
RamLakKernel ramLak = new RamLakKernel((int) (maxT / deltaT), deltaT);
CosineFilter cKern = new CosineFilter(focalLength, maxT, deltaT);
// Apply filtering
for (int theta = 0; theta < fanBeamSinoRay.getSize()[1]; ++theta) {
cKern.applyToGrid(fanBeamSinoRay.getSubGrid(theta));
}
for (int theta = 0; theta < fanBeamSinoRay.getSize()[1]; ++theta) {
ramLak.applyToGrid(fanBeamSinoRay.getSubGrid(theta));
}
fanBeamSinoRay.show("After Filtering");
// Do the backprojection
FanBeamBackprojector2D fbp = new FanBeamBackprojector2D(focalLength,
deltaT, deltaBeta, imgSzXMM, imgSzYMM);
Grid2D reco = fbp.backprojectPixelDrivenCL(fanBeamSinoRay);
reco.show("Parker" + iter);
NumericGrid recoDiff = NumericPointwiseOperators.subtractedBy(phantom, reco);
recoDiff.show("RecoDiff" + iter);
}
}
}
/*
* Copyright (C) 2010-2014 Andreas Maier
* CONRAD is developed as an Open Source project under the GNU General Public License (GPL).
*/