package edu.stanford.rsl.tutorial.fan.redundancy;
import ij.ImageJ;
import edu.stanford.rsl.conrad.data.numeric.Grid2D;
import edu.stanford.rsl.conrad.data.numeric.Grid3D;
import edu.stanford.rsl.conrad.data.numeric.NumericPointwiseOperators;
public class BinaryWeights extends Grid2D {
private final double focalLength;
private final double maxT;
private final double deltaT, dLambda;
private final int maxTIndex, maxLambdaIndex;
private Grid2D binaryMask;
public BinaryWeights(final double focalLength, final double maxT,
final double deltaT, double maxLambda, double dLambda) {
// Call constructor from superclass
super((int) Math.round(maxT / deltaT), (int)(Math.round(maxLambda / dLambda)) + 1);
// Initialize parameters
this.focalLength = focalLength;
this.maxT = maxT;
this.deltaT = deltaT;
this.dLambda = dLambda;
this.maxLambdaIndex = (int)(Math.round(maxLambda / dLambda)) + 1;
this.maxTIndex = (int) Math.round(maxT / deltaT);
//this.gammaM = (double) (Math.atan(((maxT-deltaT) / 2.d)/ focalLength) );
binaryMask = new Grid2D(this);
createWeights(this);
createMask(binaryMask);
// Correct for scaling due to varying angle lambda
NumericPointwiseOperators.multiplyBy(this, (float)( maxLambda / (Math.PI)));
}
private void createWeights(Grid2D Weights)
{
double lambda, delta;
// iterate over the detector elements
for (int t = 0; t < maxTIndex; ++t) {
// compute delta of the current ray (detector element)
delta = Math.atan((t * deltaT - maxT / 2.d + 0.5*deltaT) / focalLength);
// iterate over the projection angles
for (int b = 0; b < maxLambdaIndex; ++b) {
// compute the current lambda angle
lambda = b * dLambda;
// Default weight is 1
Weights.setAtIndex(maxTIndex - t -1, b, 1.0f);
// First case: Handles weights for redundancies at the end of the scan
// Set weights to zero (Simulates the collimator)
if (lambda >= ( Math.PI + 2*delta))
{
Weights.setAtIndex(maxTIndex - t -1, b, 0.f );
}
}
}
}
private void createMask(Grid2D Mask)
{
// iterate over the projection angles
for (int b = 0; b < maxLambdaIndex; ++b) {
// iterate over the detector elements
for (int t = 0; t < maxTIndex; ++t) {
// Default value is 1
Mask.setAtIndex(t, b, 1.0f);
}
}
// iterate over the projection angles
for (int b = 0; b < maxLambdaIndex; ++b) {
// iterate over the detector elements
for (int t = 0; t < maxTIndex; ++t) {
if(t < maxTIndex -1)
{
if (this.getAtIndex(t, b) != this.getAtIndex(t+1, b))
{
Mask.setAtIndex(t, b, 0.f );
Mask.setAtIndex(t+1, b, 0.f );
}
}
}
}
}
public Grid2D getBinaryMask()
{
return binaryMask;
}
public void applyToGrid(Grid2D sino) {
NumericPointwiseOperators.multiplyBy(sino, this);
}
public static void main (String [] args){
//fan beam bp parameters
double maxT = 400;
double deltaT = 1.d;
// set focal length according to the fan angle
double focalLength = (maxT/2.0-0.5)/Math.tan(30.0*Math.PI/180.0);
double gammaM =Math.atan2(maxT / 2.0 - 0.5, focalLength);
new ImageJ();
Grid3D g = new Grid3D((int)maxT, 181, 360, false);
for (int i = 0; i < 360; ++i)
{
double maxBeta = (double)(i+1) * Math.PI * 2.0 / 360.0;
double deltaBeta = maxBeta / 180;
BinaryWeights p = new BinaryWeights(focalLength, maxT, deltaT, maxBeta, deltaBeta);
g.setSubGrid(i, p);
//g.setSliceLabel("MaxBeta: " + Double.toString(maxBeta*180/Math.PI), i+1);
}
g.show();
double maxBeta = Math.PI-2*gammaM;
double deltaBeta = maxBeta / 180;
BinaryWeights p = new BinaryWeights(focalLength, maxT, deltaT, maxBeta, deltaBeta);
p.show();
p.getBinaryMask().show();
}
}
/*
* Copyright (C) 2010-2014 Andreas Maier
* CONRAD is developed as an Open Source project under the GNU General Public License (GPL).
*/