/*
* This file is part of the Jikes RVM project (http://jikesrvm.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License. You
* may obtain a copy of the License at
*
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* See the COPYRIGHT.txt file distributed with this work for information
* regarding copyright ownership.
*/
package org.jikesrvm.compilers.opt.inlining;
import static org.jikesrvm.compilers.opt.inlining.InlineDecision.NO;
import static org.jikesrvm.compilers.opt.inlining.InlineDecision.YES;
import static org.jikesrvm.compilers.opt.inlining.InlineDecision.guardedYES;
import static org.jikesrvm.compilers.opt.inlining.InlineTools.hasBody;
import static org.jikesrvm.compilers.opt.inlining.InlineTools.hasInlinePragma;
import static org.jikesrvm.compilers.opt.inlining.InlineTools.hasNoInlinePragma;
import static org.jikesrvm.compilers.opt.inlining.InlineTools.inlinedSizeEstimate;
import static org.jikesrvm.compilers.opt.inlining.InlineTools.isCurrentlyFinal;
import static org.jikesrvm.compilers.opt.inlining.InlineTools.isForbiddenSpeculation;
import static org.jikesrvm.compilers.opt.inlining.InlineTools.needsGuard;
import java.util.ArrayList;
import java.util.Iterator;
import org.jikesrvm.VM;
import org.jikesrvm.adaptive.controller.AdaptiveInlining;
import org.jikesrvm.adaptive.controller.Controller;
import org.jikesrvm.adaptive.database.callgraph.WeightedCallTargets;
import org.jikesrvm.classloader.NormalMethod;
import org.jikesrvm.classloader.RVMClass;
import org.jikesrvm.classloader.RVMMethod;
import org.jikesrvm.compilers.common.CompiledMethod;
import org.jikesrvm.compilers.opt.OptOptions;
import org.jikesrvm.compilers.opt.driver.OptimizingCompiler;
import org.jikesrvm.compilers.opt.runtimesupport.OptCompiledMethod;
import org.jikesrvm.objectmodel.ObjectModel;
import org.jikesrvm.scheduler.RVMThread;
/**
* The default inlining oracle used by the optimizing compiler.
* The basic strategy is as follows:
* <ol>
* <li>Always inline trivial methods that can be inlined without a guard
* <li>At O1 and greater use a mix of profile information and static heuristics
* to inline larger methods and methods that require guards.
* </ol>
*/
public final class DefaultInlineOracle implements InlineOracle {
@Override
public InlineDecision shouldInline(final CompilationState state) {
final OptOptions opts = state.getOptions();
final boolean verbose = opts.PRINT_DETAILED_INLINE_REPORT;
if (!opts.INLINE) {
return NO("inlining not enabled");
}
final RVMMethod staticCallee = state.obtainTarget();
final NormalMethod rootMethod = state.getRootMethod();
final RVMMethod caller = state.getMethod();
final int bcIndex = state.getRealBytecodeIndex();
if (verbose) VM.sysWriteln("Begin inline decision for " + "<" + caller + "," + bcIndex + "," + staticCallee + ">");
// Stage 1: We definitely don't inline certain methods
if (!state.isInvokeInterface()) {
if (staticCallee.isNative()) {
reportUnguardedDecisionIfVerbose("NO: native method", verbose);
return NO("native method");
}
if (hasNoInlinePragma(staticCallee, state)) {
reportUnguardedDecisionIfVerbose("NO: pragmaNoInline", verbose);
return NO("pragmaNoInline");
}
// We need constructors of Throwable (and its subclasses) to have their own
// compiled method IDs to correctly elide stack frames when generating stack
// traces (see StackTrace).
if (staticCallee.isObjectInitializer() &&
staticCallee.getDeclaringClass().isAssignableToThrowable()) {
reportUnguardedDecisionIfVerbose("NO: constructor of class assignable to throwable", verbose);
return NO("constructor of class assignable to throwable");
}
}
// Stage 2: At all optimization levels we should attempt to inline
// trivial methods. Even if the inline code is never executed,
// inlining a trivial method is a no cost operation as the impact
// on code size should be negligible and compile time usually is
// reduced since we expect to eliminate the call instruction (or
// at worse replace one call instruction with another one).
if (!state.isInvokeInterface() && !staticCallee.isAbstract()) {
// NB when the destination is known we will have refined the target so the
// above test passes
if (state.getHasPreciseTarget() || !needsGuard(staticCallee)) {
// call is guardless
int inlinedSizeEstimate = inlinedSizeEstimate((NormalMethod) staticCallee, state);
if (inlinedSizeEstimate < opts.INLINE_MAX_ALWAYS_INLINE_TARGET_SIZE) {
// inlining is desirable
if (!state.getSequence().containsMethod(staticCallee)) {
// not recursive
reportUnguardedDecisionIfVerbose("YES: trivial guardless inline", verbose);
return YES(staticCallee, "trivial inline");
}
}
if (hasInlinePragma(staticCallee, state)) {
// inlining is desirable
if (!state.getSequence().containsMethod(staticCallee)) {
// not recursive
reportUnguardedDecisionIfVerbose("YES: pragma inline", verbose);
return YES(staticCallee, "pragma inline");
}
}
}
}
if (opts.getOptLevel() == 0) {
// at opt level 0, trivial unguarded inlines are the only kind we consider
reportUnguardedDecisionIfVerbose("NO: only do trivial inlines at O0", verbose);
return NO("Only do trivial inlines at O0");
}
if (rootMethod.inlinedSizeEstimate() > opts.INLINE_MASSIVE_METHOD_SIZE) {
// In massive methods, we do not do any additional inlining to
// avoid completely blowing out compile time by making a bad situation worse
reportUnguardedDecisionIfVerbose("NO: only do trivial inlines into massive methods", verbose);
return NO("Root method is massive; no non-trivial inlines");
}
// Stage 3: Determine based on profile data and static information
// what are the possible targets of this call.
WeightedCallTargets targets = null;
boolean purelyStatic = true;
if (Controller.dcgAvailable() && Controller.options.ADAPTIVE_INLINING) {
targets = Controller.dcg.getCallTargets(caller, bcIndex);
if (targets != null) {
reportProfilingIfVerbose("Found profile data", verbose);
purelyStatic = false;
WeightedCallTargets filteredTargets = targets.filter(staticCallee, state.getHasPreciseTarget());
if (targets != filteredTargets) {
reportProfilingIfVerbose("Profiled callees filtered based on static information", verbose);
targets = filteredTargets;
if (targets == null) {
reportProfilingIfVerbose("After filterting no profile data...", verbose);
// After filtering, no matching profile data, fall back to
// static information to avoid degradations
targets = WeightedCallTargets.create(staticCallee, 0);
purelyStatic = true;
}
}
}
}
// Critical section: must prevent class hierarchy from changing while
// we are inspecting it to determine how/whether to do the inline guard.
synchronized (RVMClass.classLoadListener) {
boolean guardOverrideOnStaticCallee = false;
if (targets == null) {
reportUnguardedDecisionIfVerbose("no profile data", verbose);
// No profile information.
// Fake up "profile data" based on static information to
// be able to share all the decision making logic.
if (state.isInvokeInterface()) {
if (opts.INLINE_GUARDED_INTERFACES) {
RVMMethod singleImpl = InterfaceHierarchy.getUniqueImplementation(staticCallee);
if (singleImpl != null && hasBody(singleImpl)) {
if (verbose) {
VM.sysWriteln("\tFound a single implementation " +
singleImpl +
" of an interface method " +
staticCallee);
}
targets = WeightedCallTargets.create(singleImpl, 0);
guardOverrideOnStaticCallee = true;
}
}
} else {
// invokestatic, invokevirtual, invokespecial
if (staticCallee.isAbstract()) {
// look for single non-abstract implementation of the abstract method
RVMClass klass = staticCallee.getDeclaringClass();
while (true) {
RVMClass[] subClasses = klass.getSubClasses();
if (subClasses.length != 1) break; // multiple subclasses => multiple targets
RVMMethod singleImpl =
subClasses[0].findDeclaredMethod(staticCallee.getName(), staticCallee.getDescriptor());
if (singleImpl != null && !singleImpl.isAbstract()) {
// found something
reportProfilingIfVerbose("single impl of abstract method", verbose);
targets = WeightedCallTargets.create(singleImpl, 0);
guardOverrideOnStaticCallee = true;
break;
}
klass = subClasses[0]; // keep crawling down the hierarchy
}
} else {
targets = WeightedCallTargets.create(staticCallee, 0);
}
}
}
// At this point targets is either null, or accurately represents what we
// think are the likely target(s) of the call site.
// This information may be either derived from profile information or
// from static heuristics. To the first approximation, we don't care which.
// If there is a precise target, then targets contains exactly that target method.
if (targets == null) return NO("No potential targets identified");
// Stage 4: We have one or more targets. Determine what if anything should be done with them.
final ArrayList<RVMMethod> methodsToInline = new ArrayList<RVMMethod>();
final ArrayList<Boolean> methodsNeedGuard = new ArrayList<Boolean>();
final double callSiteWeight = targets.totalWeight();
final boolean goosc = guardOverrideOnStaticCallee; // real closures anyone?
final boolean ps = purelyStatic; // real closures anyone?
targets.visitTargets(new WeightedCallTargets.Visitor() {
@Override
public void visit(RVMMethod callee, double weight) {
if (hasBody(callee)) {
reportInitialProfileState(verbose, callee, weight);
// Don't inline recursively and respect no inline pragmas
InlineSequence seq = state.getSequence();
if (seq.containsMethod(callee)) {
reportSelectionIfVerbose("Reject: recursive", verbose);
return;
}
if (hasNoInlinePragma(callee, state)) {
reportSelectionIfVerbose("Reject: noinline pragma", verbose);
return;
}
// more or less figure out the guard situation early -- impacts size estimate.
boolean needsGuard = !state.getHasPreciseTarget() && (staticCallee != callee || needsGuard(staticCallee));
if (needsGuard && isForbiddenSpeculation(state.getRootMethod(), callee)) {
reportSelectionIfVerbose("Reject: forbidden speculation", verbose);
return;
}
boolean currentlyFinal =
(goosc || (staticCallee == callee)) && isCurrentlyFinal(callee, !opts.guardWithClassTest());
boolean preEx = needsGuard && state.getIsExtant() && opts.INLINE_PREEX && currentlyFinal;
if (needsGuard && !preEx) {
if (!opts.INLINE_GUARDED) {
reportSelectionIfVerbose("Reject: guarded inlining disabled", verbose);
return;
}
if (!currentlyFinal && ps) {
reportSelectionIfVerbose("Reject: multiple targets and no profile data", verbose);
return;
}
}
// Estimate cost of performing this inlining action.
// Includes cost of guard & off-branch call if they are going to be generated.
boolean decideYes = false;
if (hasInlinePragma(callee, state)) {
reportSelectionIfVerbose("Select: pragma inline", verbose);
decideYes = true;
} else {
// Preserve previous inlining decisions
// Not the best thing in the world due to phase shifts, but
// it does buy some degree of stability. So, it is probably the lesser
// of two evils.
CompiledMethod prev = state.getRootMethod().getCurrentCompiledMethod();
if (prev != null && prev.getCompilerType() == CompiledMethod.OPT) {
if (((OptCompiledMethod)prev).getMCMap().hasInlinedEdge(caller, bcIndex, callee)) {
reportSelectionIfVerbose("Select: Previously inlined", verbose);
decideYes = true;
}
}
if (!decideYes) {
int inlinedSizeEstimate = inlinedSizeEstimate((NormalMethod) callee, state);
int cost = inliningActionCost(inlinedSizeEstimate, needsGuard, preEx, opts);
int maxCost = opts.INLINE_MAX_TARGET_SIZE;
if (callSiteWeight > Controller.options.INLINE_AI_SEED_MULTIPLIER) {
// real profile data with enough samples for us to trust it.
// Use weight and shape of call site distribution to compute
// a higher maxCost.
double fractionOfSample = weight / callSiteWeight;
if (needsGuard && fractionOfSample < opts.INLINE_AI_MIN_CALLSITE_FRACTION) {
// This call accounts for less than INLINE_AI_MIN_CALLSITE_FRACTION
// of the profiled targets at this call site.
// It is highly unlikely to be profitable to inline it.
reportSelectionIfVerbose("Reject: less than INLINE_AI_MIN_CALLSITE_FRACTION of distribution", verbose);
maxCost = 0;
} else {
if (cost > maxCost) {
/* We're going to increase the maximum callee size (maxCost) we're willing
* to inline based on how "hot" (what % of the total weight in the
* dynamic call graph) the edge is.
*/
double adjustedWeight = AdaptiveInlining.adjustedWeight(weight);
if (adjustedWeight > Controller.options.INLINE_AI_HOT_CALLSITE_THRESHOLD) {
/* A truly hot edge; use the max allowable callee size */
maxCost = opts.INLINE_AI_MAX_TARGET_SIZE;
} else {
/* A warm edge, we will use a value between the static default and the max allowable.
* The code below simply does a linear interpolation between 2x static default
* and max allowable.
* Other alternatives would be to do a log interpolation or some other step function.
*/
int range = opts.INLINE_AI_MAX_TARGET_SIZE - 2 * opts.INLINE_MAX_TARGET_SIZE;
double slope = (range) / Controller.options.INLINE_AI_HOT_CALLSITE_THRESHOLD;
int scaledAdj = (int) (slope * adjustedWeight);
maxCost += opts.INLINE_MAX_TARGET_SIZE + scaledAdj;
}
}
}
}
// Somewhat bogus, but if we get really deeply inlined we start backing off.
int curDepth = state.getInlineDepth();
if (curDepth > opts.INLINE_MAX_INLINE_DEPTH) {
maxCost /= (curDepth - opts.INLINE_MAX_INLINE_DEPTH + 1);
}
decideYes = cost <= maxCost;
if (decideYes) {
reportSelectionIfVerbose("Accept: cost of " + cost + " was below threshold " + maxCost, verbose);
} else {
reportSelectionIfVerbose("Reject: cost of " + cost + " was above threshold " + maxCost, verbose);
}
}
}
if (decideYes) {
// Ok, we're going to inline it.
// Record that and also whether or not we think it needs a guard.
methodsToInline.add(callee);
if (preEx) {
ClassLoadingDependencyManager cldm = (ClassLoadingDependencyManager) RVMClass.classLoadListener;
if (ClassLoadingDependencyManager.TRACE || ClassLoadingDependencyManager.DEBUG) {
cldm.report("PREEX_INLINE: Inlined " + callee + " into " + caller);
}
cldm.addNotOverriddenDependency(callee, state.getCompiledMethod());
if (goosc) {
cldm.addNotOverriddenDependency(staticCallee, state.getCompiledMethod());
}
methodsNeedGuard.add(Boolean.FALSE);
} else {
methodsNeedGuard.add(needsGuard);
}
}
}
}
private void reportInitialProfileState(final boolean verbose, RVMMethod callee,
double weight) {
double adjustedWeight = AdaptiveInlining.adjustedWeight(weight);
String sampleString = " samples (";
if (Double.isNaN(adjustedWeight)) {
sampleString += "no DCG available)";
} else {
sampleString += (100 * adjustedWeight) +
"%)";
}
reportProfilingIfVerbose("Evaluating target " +
callee +
" with " +
weight +
sampleString, verbose);
}
});
// Stage 5: Choose guards and package up the results in an InlineDecision object
if (methodsToInline.isEmpty()) {
InlineDecision d = NO("No desirable targets");
reportGuardedDecisionIfVerbose(d, verbose);
return d;
} else if (methodsToInline.size() == 1) {
RVMMethod target = methodsToInline.get(0);
boolean needsGuard = methodsNeedGuard.get(0);
if (needsGuard) {
if ((guardOverrideOnStaticCallee || target == staticCallee) &&
isCurrentlyFinal(target, !opts.guardWithClassTest())) {
InlineDecision d =
guardedYES(target,
chooseGuard(caller, target, staticCallee, state, true),
"Guarded inline of single static target");
/*
* Determine if it is allowable to put an OSR point in the failed case of
* the guarded inline instead of generating a real call instruction.
* There are several conditions that must be met for this to be allowable:
* (1) OSR guarded inlining and recompilation must both be enabled
* (2) The current context must be an interruptible method
* (3) The application must be started. This is a rough proxy for the VM
* being fully booted so we can actually get through the OSR process.
* Note: One implication of this requirement is that we will
* never put an OSR on an off-branch of a guarded inline in bootimage
* code.
*/
if (opts.OSR_GUARDED_INLINING && Controller.options.ENABLE_RECOMPILATION &&
caller.isInterruptible() &&
OptimizingCompiler.getAppStarted()) {
if (VM.VerifyAssertions) VM._assert(VM.runningVM);
d.setOSRTestFailed();
}
if (verbose) VM.sysWriteln("\tDecide: " + d);
return d;
} else {
InlineDecision d =
guardedYES(target,
chooseGuard(caller, target, staticCallee, state, false),
"Guarded inlining of one potential target");
reportGuardedDecisionIfVerbose(d, verbose);
return d;
}
} else {
InlineDecision d = YES(target, "Unique and desirable target");
reportGuardedDecisionIfVerbose(d, verbose);
return d;
}
} else {
RVMMethod[] methods = new RVMMethod[methodsNeedGuard.size()];
byte[] guards = new byte[methods.length];
int idx = 0;
Iterator<RVMMethod> methodIterator = methodsToInline.iterator();
Iterator<Boolean> guardIterator = methodsNeedGuard.iterator();
while (methodIterator.hasNext()) {
RVMMethod target = methodIterator.next();
boolean needsGuard = guardIterator.next();
if (VM.VerifyAssertions) {
if (!needsGuard) {
VM.sysWriteln("Error, inlining for " + methodsToInline.size() + " targets");
VM.sysWriteln("Inlining into " + rootMethod + " at bytecode index " + bcIndex);
VM.sysWriteln("Method: " + target + " doesn't need a guard");
for (int i = 0; i < methodsToInline.size(); i++) {
VM.sysWriteln(" Method " + i + ": " + methodsToInline.get(i));
VM.sysWriteln(" NeedsGuard: " + methodsNeedGuard.get(i));
}
VM._assert(VM.NOT_REACHED);
}
}
methods[idx] = target;
guards[idx] = chooseGuard(caller, target, staticCallee, state, false);
idx++;
}
InlineDecision d = guardedYES(methods, guards, "Inline multiple targets");
reportGuardedDecisionIfVerbose(d, verbose);
return d;
}
}
}
private void reportUnguardedDecisionIfVerbose(String reason, boolean verbose) {
if (verbose) {
VM.sysWriteln("\t" + reason);
VM.sysWriteln();
}
}
private void reportProfilingIfVerbose(String profileInfo, boolean verbose) {
if (verbose) {
VM.sysWriteln("\t" + profileInfo);
}
}
private void reportSelectionIfVerbose(String selectionInfo, boolean verbose) {
reportProfilingIfVerbose("\t" + selectionInfo, verbose);
}
private void reportGuardedDecisionIfVerbose(InlineDecision d,
final boolean verbose) {
reportUnguardedDecisionIfVerbose("Decide: " + d, verbose);
}
/**
* Logic to select the appropriate guarding mechanism for the edge
* from caller to callee according to the controlling {@link OptOptions}.
* If we are using IG_CODE_PATCH, then this method also records
* the required dependency.
* Precondition: lock on {@link RVMClass#classLoadListener} is held.
*
* @param caller The caller method
* @param singleImpl the method implementation that will be protected by the guard
* @param callee The callee method
* @param state compilation state at this point
* @param codePatchSupported Can we use code patching at this call site?
* @return the chosen guard
*/
private byte chooseGuard(RVMMethod caller, RVMMethod singleImpl, RVMMethod callee, CompilationState state,
boolean codePatchSupported) {
byte guard = state.getOptions().INLINE_GUARD_KIND;
if (codePatchSupported) {
if (VM.VerifyAssertions && VM.runningVM) {
VM._assert(ObjectModel.holdsLock(RVMClass.classLoadListener, RVMThread.getCurrentThread()));
}
if (guard == OptOptions.INLINE_GUARD_CODE_PATCH) {
ClassLoadingDependencyManager cldm = (ClassLoadingDependencyManager) RVMClass.classLoadListener;
if (ClassLoadingDependencyManager.TRACE || ClassLoadingDependencyManager.DEBUG) {
cldm.report("CODE PATCH: Inlined " + singleImpl + " into " + caller);
}
cldm.addNotOverriddenDependency(callee, state.getCompiledMethod());
}
} else if (guard == OptOptions.INLINE_GUARD_CODE_PATCH) {
guard = OptOptions.INLINE_GUARD_METHOD_TEST;
}
if (guard == OptOptions.INLINE_GUARD_METHOD_TEST && singleImpl.getDeclaringClass().isFinal()) {
// class test is more efficient and just as effective
guard = OptOptions.INLINE_GUARD_CLASS_TEST;
}
return guard;
}
/**
* Estimate the expected cost of the inlining action
* (includes both the inline body and the guard/off-branch code).
*
* @param inlinedBodyEstimate size estimate for inlined body
* @param needsGuard is it going to be a guarded inline?
* @param preEx can preEx inlining be used to avoid the guard?
* @param opts controlling options object
* @return the estimated cost of the inlining action
*/
private int inliningActionCost(int inlinedBodyEstimate, boolean needsGuard, boolean preEx, OptOptions opts) {
int guardCost = 0;
if (needsGuard & !preEx) {
guardCost += NormalMethod.CALL_COST;
if (opts.guardWithMethodTest()) {
guardCost += 3 * NormalMethod.SIMPLE_OPERATION_COST;
} else if (opts.guardWithCodePatch()) {
guardCost += NormalMethod.SIMPLE_OPERATION_COST;
} else { // opts.guardWithClassTest()
guardCost += 2 * NormalMethod.SIMPLE_OPERATION_COST;
}
}
return guardCost + inlinedBodyEstimate;
}
}