/* * This file is part of the Jikes RVM project (http://jikesrvm.org). * * This file is licensed to You under the Common Public License (CPL); * You may not use this file except in compliance with the License. You * may obtain a copy of the License at * * http://www.opensource.org/licenses/cpl1.0.php * * See the COPYRIGHT.txt file distributed with this work for information * regarding copyright ownership. */ package org.jikesrvm.compilers.opt; import java.util.Enumeration; import org.jikesrvm.compilers.opt.ir.OPT_BasicBlock; import org.jikesrvm.compilers.opt.ir.OPT_IR; import org.jikesrvm.compilers.opt.ir.OPT_Instruction; import org.jikesrvm.compilers.opt.ir.OPT_MemoryOperand; import org.jikesrvm.compilers.opt.ir.OPT_Operand; import org.jikesrvm.compilers.opt.ir.OPT_Register; /** * An object that returns an estimate of the relative cost of spilling a * symbolic register. */ class OPT_SimpleSpillCost extends OPT_SpillCostEstimator { // modify the following factor to adjust the spill penalty in move // instructions public static final double MOVE_FACTOR = 1.0; // registers used in memory operands may hurt more than 'normal', since // they will definitely use a scratch register. // rationale for 5: 5 instructions affected when using a scratch register. // (2 to save physical register, 1 to load scratch, 1 to dump scratch, and // the original) public static final double MEMORY_OPERAND_FACTOR = 5.0; OPT_SimpleSpillCost(OPT_IR ir) { calculate(ir); } /** * Calculate the estimated cost for each register. */ void calculate(OPT_IR ir) { for (Enumeration<OPT_BasicBlock> e = ir.getBasicBlocks(); e.hasMoreElements();) { OPT_BasicBlock bb = e.nextElement(); for (Enumeration<OPT_Instruction> ie = bb.forwardInstrEnumerator(); ie.hasMoreElements();) { OPT_Instruction s = ie.nextElement(); double factor = (bb.getInfrequent()) ? 0.0 : 1.0; if (s.isMove()) { factor *= MOVE_FACTOR; } double baseFactor = factor; if (hasBadSizeMemoryOperand(s)) { baseFactor *= MEMORY_OPERAND_FACTOR; } // first deal with non-memory operands for (Enumeration<OPT_Operand> e2 = s.getRootOperands(); e2.hasMoreElements();) { OPT_Operand op = e2.nextElement(); if (op.isRegister()) { OPT_Register r = op.asRegister().getRegister(); if (r.isSymbolic()) { update(r, baseFactor); } } } // now handle memory operands factor *= MEMORY_OPERAND_FACTOR; for (Enumeration<OPT_Operand> e2 = s.getMemoryOperands(); e2.hasMoreElements();) { OPT_MemoryOperand M = (OPT_MemoryOperand) e2.nextElement(); if (M.base != null) { OPT_Register r = M.base.getRegister(); if (r.isSymbolic()) { update(r, factor); } } if (M.index != null) { OPT_Register r = M.index.getRegister(); if (r.isSymbolic()) { update(r, factor); } } } } } } /** * Does instruction s have a memory operand of an inconvenient size? * NOTE: This is pretty intel-specific. Refactor to arch/ tree. */ static boolean hasBadSizeMemoryOperand(OPT_Instruction s) { for (Enumeration<OPT_Operand> e = s.getMemoryOperands(); e.hasMoreElements();) { OPT_MemoryOperand M = (OPT_MemoryOperand) e.nextElement(); if (M.size != 4) return true; } return false; } }