/* * This file is part of the Jikes RVM project (http://jikesrvm.org). * * This file is licensed to You under the Common Public License (CPL); * You may not use this file except in compliance with the License. You * may obtain a copy of the License at * * http://www.opensource.org/licenses/cpl1.0.php * * See the COPYRIGHT.txt file distributed with this work for information * regarding copyright ownership. */ package org.mmtk.plan.refcount.generational; import org.mmtk.plan.refcount.RCBaseMutator; import org.mmtk.plan.refcount.RCHeader; import org.mmtk.policy.CopyLocal; import org.mmtk.policy.Space; import org.mmtk.utility.Constants; import org.mmtk.utility.alloc.Allocator; import org.mmtk.vm.VM; import org.vmmagic.pragma.*; import org.vmmagic.unboxed.*; /** * This class implements <i>per-mutator thread</i> behavior and * state for the <i>GenRC</i> plan, a generational reference * counting collector.<p> * * Specifically, this class defines mutation-time allocation (allocation * into the nursery and "pre-tenuring" into the mature space), write barriers * and per-mutator collection semantics (such as flushing rememberd sets * flushing and initializing allocators).<p> * * @see GenRC for a description of the generational reference counting * algorithm.<p> * * FIXME Currently GenRC does not properly separate mutator and collector * behaviors, so most of the collection logic in GenRCMutator should really * be per-collector thread, not per-mutator thread. * * @see org.mmtk.plan.refcount.RCBaseMutator * @see GenRC * @see GenRCCollector * @see org.mmtk.plan.StopTheWorldMutator * @see org.mmtk.plan.MutatorContext */ @Uninterruptible public abstract class GenRCMutator extends RCBaseMutator implements Constants { /**************************************************************************** * Instance fields */ public CopyLocal nursery = new CopyLocal(GenRC.nurserySpace); /**************************************************************************** * * Mutator-time allocation */ /** * Allocate space (for an object) * * @param bytes The size of the space to be allocated (in bytes) * @param align The requested alignment * @param offset The alignment offset * @param allocator The allocator number to be used for this allocation * @param site Allocation site. * @return The address of the first byte of the allocated region */ @Inline public final Address alloc(int bytes, int align, int offset, int allocator, int site) { if (allocator == GenRC.ALLOC_NURSERY) { return nursery.alloc(bytes, align, offset); } return super.alloc(bytes,align,offset,allocator, site); } /** * Perform post-allocation actions. For many allocators none are * required. * * @param ref The newly allocated object * @param typeRef the type reference for the instance being created * @param bytes The size of the space to be allocated (in bytes) * @param allocator The allocator number to be used for this allocation */ @Inline public final void postAlloc(ObjectReference ref, ObjectReference typeRef, int bytes, int allocator) { if (allocator != GenRC.ALLOC_NURSERY) { super.postAlloc(ref,typeRef,bytes,allocator); } } /** * Return the space into which an allocator is allocating. This * particular method will match against those spaces defined at this * level of the class hierarchy. Subclasses must deal with spaces * they define and refer to superclasses appropriately. This exists * to support {@link org.mmtk.plan.MutatorContext#getOwnAllocator(Allocator)}. * * @see org.mmtk.plan.MutatorContext#getOwnAllocator(Allocator) * @param a An allocator * @return The space into which <code>a</code> is allocating, or * <code>null</code> if there is no space associated with * <code>a</code>. */ public final Space getSpaceFromAllocator(Allocator a) { if (a == nursery) return GenRC.nurserySpace; return super.getSpaceFromAllocator(a); } /** * Return the allocator instance associated with a space * <code>space</code>, for this plan instance. This exists * to support {@link org.mmtk.plan.MutatorContext#getOwnAllocator(Allocator)}. * * @see org.mmtk.plan.MutatorContext#getOwnAllocator(Allocator) * @param space The space for which the allocator instance is desired. * @return The allocator instance associated with this plan instance * which is allocating into <code>space</code>, or <code>null</code> * if no appropriate allocator can be established. */ public final Allocator getAllocatorFromSpace(Space space) { if (space == GenRC.nurserySpace) return nursery; return super.getAllocatorFromSpace(space); } /**************************************************************************** * * Collection */ /** * Perform a per-mutator collection phase. * * @param phaseId The collection phase to perform * @param primary Perform any single-threaded activities using this thread. */ @Inline public void collectionPhase(short phaseId, boolean primary) { if (phaseId == GenRC.PREPARE) { nursery.rebind(GenRC.nurserySpace); } super.collectionPhase(phaseId, primary); } /**************************************************************************** * * Write barriers. */ /** * A new reference is about to be created. Perform appropriate * write barrier action.<p> * * In this case, we remember the address of the source of the * pointer if the new reference points into the nursery from * non-nursery space. * * @param src The object into which the new reference will be stored * @param slot The address into which the new reference will be * stored. * @param tgt The target of the new reference * @param metaDataA An int that assists the host VM in creating a store * @param metaDataB An int that assists the host VM in creating a store * @param mode The mode of the store (eg putfield, putstatic etc) */ @Inline public final void writeBarrier(ObjectReference src, Address slot, ObjectReference tgt, Offset metaDataA, int metaDataB, int mode) { if (GenRC.GATHER_WRITE_BARRIER_STATS) GenRC.wbFast.inc(); if (RCHeader.logRequired(src)) writeBarrierSlow(src); VM.barriers.performWriteInBarrier(src, slot, tgt, metaDataA, metaDataB, mode); } /** * Attempt to atomically exchange the value in the given slot * with the passed replacement value. If a new reference is * created, we must then take appropriate write barrier actions.<p> * * @param src The object into which the new reference will be stored * @param slot The address into which the new reference will be * stored. * @param old The old reference to be swapped out * @param tgt The target of the new reference * @param metaDataA An int that assists the host VM in creating a store * @param metaDataB An int that assists the host VM in creating a store * @param mode The context in which the store occured * @return True if the swap was successful. */ public boolean tryCompareAndSwapWriteBarrier(ObjectReference src, Address slot, ObjectReference old, ObjectReference tgt, Offset metaDataA, int metaDataB, int mode) { if (RCHeader.logRequired(src)) writeBarrierSlow(src); return VM.barriers.tryCompareAndSwapWriteInBarrier(src, slot, old, tgt, metaDataA, metaDataB, mode); } /** * A number of references are about to be copied from object * <code>src</code> to object <code>dst</code> (as in an array * copy). Thus, <code>dst</code> is the mutated object. Take * appropriate write barrier actions.<p> * * In this case, we simply remember the mutated source object. * * @param src The source of the values to copied * @param srcOffset The offset of the first source address, in * bytes, relative to <code>src</code> (in principle, this could be * negative). * @param dst The mutated object, i.e. the destination of the copy. * @param dstOffset The offset of the first destination address, in * bytes relative to <code>tgt</code> (in principle, this could be * negative). * @param bytes The size of the region being copied, in bytes. * @return True if the update was performed by the barrier, false if * left to the caller (always false in this case). */ @Inline public final boolean writeBarrier(ObjectReference src, Offset srcOffset, ObjectReference dst, Offset dstOffset, int bytes) { if (GenRC.GATHER_WRITE_BARRIER_STATS) GenRC.wbFast.inc(); if (RCHeader.logRequired(dst)) writeBarrierSlow(dst); return false; } /** * This object <i>may</i> need to be logged because we <i>may</i> * have been the first to update it. We can't be sure because of * the (delibrate) lack of synchronization in the * <code>logRequired()</code> method, which can generate a race * condition. So, we now use an atomic operation to arbitrate the * race. If we successful, we will log the object, enumerating its * pointers with the decrement enumerator and marking it as logged. * * @param src The object being mutated. */ @NoInline private void writeBarrierSlow(ObjectReference src) { if (VM.VERIFY_ASSERTIONS) { VM.assertions._assert(!Space.isInSpace(GenRC.NS, src)); } if (RCHeader.attemptToLog(src)) { if (GenRC.GATHER_WRITE_BARRIER_STATS) GenRC.wbSlow.inc(); modBuffer.push(src); decBuffer.processChildren(src); RCHeader.makeLogged(src); } } }