/* * This file is part of the Jikes RVM project (http://jikesrvm.org). * * This file is licensed to You under the Common Public License (CPL); * You may not use this file except in compliance with the License. You * may obtain a copy of the License at * * http://www.opensource.org/licenses/cpl1.0.php * * See the COPYRIGHT.txt file distributed with this work for information * regarding copyright ownership. */ package org.mmtk.plan.refcount.fullheap; import org.mmtk.plan.refcount.RCBase; import org.mmtk.plan.refcount.RCBaseMutator; import org.mmtk.plan.refcount.RCHeader; import org.mmtk.policy.Space; import org.mmtk.utility.Constants; import org.mmtk.vm.VM; import org.vmmagic.pragma.*; import org.vmmagic.unboxed.*; /** * This class implements <i>per-mutator thread</i> behavior * and state for the <i>MS</i> plan, which implements a full-heap * mark-sweep collector.<p> * * Specifically, this class defines <i>MS</i> mutator-time allocation * and per-mutator thread collection semantics (flushing and restoring * per-mutator allocator state).<p> * * @see org.mmtk.plan.markcompact.MC for an overview of the mark-compact algorithm.<p> * * FIXME The SegregatedFreeList class (and its decendents such as * MarkSweepLocal) does not properly separate mutator and collector * behaviors, so the ms field below should really not exist in * this class as there is no collection-time allocation in this * collector. * * @see RC * @see RCCollector * @see org.mmtk.plan.StopTheWorldMutator * @see org.mmtk.plan.MutatorContext */ @Uninterruptible public abstract class RCMutator extends RCBaseMutator implements Constants { /**************************************************************************** * * Mutator-time allocation */ /** * Allocate memory for an object. This class handles the default allocator * from the mark sweep space, and delegates everything else to the * superclass. * * @param bytes The number of bytes required for the object. * @param align Required alignment for the object. * @param offset Offset associated with the alignment. * @param allocator The allocator associated with this request. * @param site Allocation site. * @return The low address of the allocated memory. */ @Inline public Address alloc(int bytes, int align, int offset, int allocator, int site) { if (allocator == RC.ALLOC_DEFAULT) { // The default allocator for full heap RC is ALLOC_RC allocator = RC.ALLOC_RC; } return super.alloc(bytes, align, offset, allocator, site); } /** * Perform post-allocation actions. Initialize the object header for * objects in the mark-sweep space, and delegate to the superclass for * other objects. * * @param ref The newly allocated object * @param typeRef the type reference for the instance being created * @param bytes The size of the space to be allocated (in bytes) * @param allocator The allocator number to be used for this allocation */ @Inline public void postAlloc(ObjectReference ref, ObjectReference typeRef, int bytes, int allocator) { if (allocator == RC.ALLOC_DEFAULT) { // The default allocator for full heap RC is ALLOC_RC allocator = RC.ALLOC_RC; } super.postAlloc(ref, typeRef, bytes, allocator); } /**************************************************************************** * * Write barriers. */ /** * A new reference is about to be created. Perform appropriate * write barrier action.<p> * * In this case, we remember the address of the source of the * pointer if the new reference points into the nursery from * non-nursery space. This method is <b>inlined</b> by the * optimizing compiler, and the methods it calls are forced out of * line. * * @param src The object into which the new reference will be stored * @param slot The address into which the new reference will be * stored. * @param tgt The target of the new reference * @param metaDataA An int that assists the host VM in creating a store * @param metaDataB An int that assists the host VM in creating a store * @param mode The mode of the store (eg putfield, putstatic) */ @Inline public final void writeBarrier(ObjectReference src, Address slot, ObjectReference tgt, Offset metaDataA, int metaDataB, int mode) { if (VM.VERIFY_ASSERTIONS) { // TODO VM.assertions._assert(!Plan.gcInProgress()); } if (RC.INLINE_WRITE_BARRIER) writeBarrierInternal(src, slot, tgt, metaDataA, metaDataB, mode); else writeBarrierInternalOOL(src, slot, tgt, metaDataA, metaDataB, mode); } /** * Attempt to atomically exchange the value in the given slot * with the passed replacement value. If a new reference is * created, we must then take appropriate write barrier actions.<p> * * @param src The object into which the new reference will be stored * @param slot The address into which the new reference will be * stored. * @param old The old reference to be swapped out * @param tgt The target of the new reference * @param metaDataA An int that assists the host VM in creating a store * @param metaDataB An int that assists the host VM in creating a store * @param mode The context in which the store occured * @return True if the swap was successful. */ @Inline public boolean tryCompareAndSwapWriteBarrier(ObjectReference src, Address slot, ObjectReference old, ObjectReference tgt, Offset metaDataA, int metaDataB, int mode) { if (VM.VERIFY_ASSERTIONS) { // TODO VM.assertions._assert(!Plan.gcInProgress()); } if (RC.INLINE_WRITE_BARRIER) return tryCompareAndSwapWriteBarrierInternal(src, slot, old, tgt, metaDataA, metaDataB, mode); else return tryCompareAndSwapWriteBarrierInternalOOL(src, slot, old, tgt, metaDataA, metaDataB, mode); } /** * Attempt to atomically exchange the value in the given slot * with the passed replacement value. If a new reference is * created, we must then take appropriate write barrier actions.<p> * * @param src The object being mutated. * @param slot The address of the word (slot) being mutated. * @param old The old reference to be swapped out * @param tgt The target of the new reference (about to be stored into src). * @param metaDataA An int that assists the host VM in creating a store * @param metaDataB An int that assists the host VM in creating a store * @param mode The mode of the store (eg putfield, putstatic) */ @Inline private boolean tryCompareAndSwapWriteBarrierInternal(ObjectReference src, Address slot, ObjectReference old, ObjectReference tgt, Offset metaDataA, int metaDataB, int mode) { if (RC.GATHER_WRITE_BARRIER_STATS) RC.wbFast.inc(); if (RC.WITH_COALESCING_RC) { if (RCHeader.logRequired(src)) { coalescingWriteBarrierSlow(src); } return VM.barriers.tryCompareAndSwapWriteInBarrier(src,slot,old,tgt,metaDataA,metaDataB,mode); } else { boolean result = VM.barriers.tryCompareAndSwapWriteInBarrier(src,slot,old,tgt,metaDataA,metaDataB,mode); if (result && !Space.isInSpace(RCBase.VM_SPACE, src)) { if (RC.isRCObject(old)) decBuffer.pushOOL(old); if (RC.isRCObject(tgt)) RCHeader.incRCOOL(tgt); } return result; } } /** * Attempt to atomically exchange the value in the given slot * with the passed replacement value. If a new reference is * created, we must then take appropriate write barrier actions.<p> * * @param src The object being mutated. * @param slot The address of the word (slot) being mutated. * @param old The old reference to be swapped out * @param tgt The target of the new reference (about to be stored into src). * @param metaDataA An int that assists the host VM in creating a store * @param metaDataB An int that assists the host VM in creating a store * @param mode The mode of the store (eg putfield, putstatic) */ @NoInline private boolean tryCompareAndSwapWriteBarrierInternalOOL(ObjectReference src, Address slot, ObjectReference old, ObjectReference tgt, Offset metaDataA, int metaDataB, int mode) { return tryCompareAndSwapWriteBarrierInternal(src,slot,old,tgt,metaDataA,metaDataB,mode); } /** * A new reference is about to be created. Perform appropriate * write barrier action.<p> * * @param src The object being mutated. * @param slot The address of the word (slot) being mutated. * @param tgt The target of the new reference (about to be stored into src). * @param metaDataA An int that assists the host VM in creating a store * @param metaDataB An int that assists the host VM in creating a store * @param mode The mode of the store (eg putfield, putstatic) */ @Inline private void writeBarrierInternal(ObjectReference src, Address slot, ObjectReference tgt, Offset metaDataA, int metaDataB, int mode) { if (RC.GATHER_WRITE_BARRIER_STATS) RC.wbFast.inc(); if (RC.WITH_COALESCING_RC) { if (RCHeader.logRequired(src)) { coalescingWriteBarrierSlow(src); } VM.barriers.performWriteInBarrier(src,slot,tgt,metaDataA,metaDataB,mode); } else { ObjectReference old = VM.barriers. performWriteInBarrierAtomic(src,slot,tgt,metaDataA,metaDataB,mode); if (Space.isInSpace(RCBase.VM_SPACE, src)) return; if (RC.isRCObject(old)) decBuffer.pushOOL(old); if (RC.isRCObject(tgt)) RCHeader.incRCOOL(tgt); } } /** * An out of line version of the write barrier. This method is * forced <b>out of line</b> by the optimizing compiler, and the * methods it calls are forced out of inline. * * @param src The object being mutated. * @param slot The address of the word (slot) being mutated. * @param tgt The target of the new reference (about to be stored into src). * @param metaDataA An int that assists the host VM in creating a store * @param metaDataB An int that assists the host VM in creating a store * @param mode The mode of the store (eg putfield, putstatic) */ @NoInline private void writeBarrierInternalOOL(ObjectReference src, Address slot, ObjectReference tgt, Offset metaDataA, int metaDataB, int mode) { if (RC.GATHER_WRITE_BARRIER_STATS) RC.wbFast.inc(); if (RC.WITH_COALESCING_RC) { if (RCHeader.logRequired(src)) { coalescingWriteBarrierSlow(src); } VM.barriers.performWriteInBarrier(src,slot,tgt, metaDataA, metaDataB, mode); } else { ObjectReference old = VM.barriers. performWriteInBarrierAtomic(src,slot,tgt,metaDataA,metaDataB,mode); if (Space.isInSpace(RCBase.VM_SPACE, src)) return; if (RC.isRCObject(old)) decBuffer.push(old); if (RC.isRCObject(tgt)) RCHeader.incRC(tgt); } } /** * A number of references are about to be copied from object * <code>src</code> to object <code>dst</code> (as in an array * copy). Thus, <code>dst</code> is the mutated object. Take * appropriate write barrier actions.<p> * * In this case, we simply remember the mutated source object, or we * enumerate the copied pointers and perform appropriate actions on * each. * * @param src The source of the values to copied * @param srcOffset The offset of the first source address, in * bytes, relative to <code>src</code> (in principle, this could be * negative). * @param dst The mutated object, i.e. the destination of the copy. * @param dstOffset The offset of the first destination address, in * bytes relative to <code>tgt</code> (in principle, this could be * negative). * @param bytes The size of the region being copied, in bytes. * @return True if the update was performed by the barrier, false if * left to the caller (this depends on which style of barrier is * being used). */ @Inline public final boolean writeBarrier(ObjectReference src, Offset srcOffset, ObjectReference dst, Offset dstOffset, int bytes) { if (VM.VERIFY_ASSERTIONS) { // TODO VM.assertions._assert(!Plan.gcInProgress()); } if (RC.GATHER_WRITE_BARRIER_STATS) RC.wbFast.inc(); if (RC.WITH_COALESCING_RC) { if (RCHeader.logRequired(dst)) coalescingWriteBarrierSlow(dst); return false; } else { if (Space.isInSpace(RCBase.VM_SPACE, dst)) return false; Address s = src.toAddress().plus(srcOffset); Address d = dst.toAddress().plus(dstOffset); while (bytes > 0) { ObjectReference tgt = s.loadObjectReference(); ObjectReference old; do { old = d.prepareObjectReference(); } while (!d.attempt(old, tgt)); if (RC.isRCObject(old)) decBuffer.push(old); if (RC.isRCObject(tgt)) RCHeader.incRC(tgt); s = s.plus(BYTES_IN_ADDRESS); d = d.plus(BYTES_IN_ADDRESS); bytes -= BYTES_IN_ADDRESS; } return true; } } /** * Slow path of the coalescing write barrier. * * <p> Attempt to log the source object. If successful in racing for * the log bit, push an entry into the modified buffer and add a * decrement buffer entry for each referent object (in the RC space) * before setting the header bit to indicate that it has finished * logging (allowing others in the race to continue). * * @param srcObj The object being mutated */ @NoInline private void coalescingWriteBarrierSlow(ObjectReference srcObj) { if (VM.VERIFY_ASSERTIONS) { VM.assertions._assert(RC.WITH_COALESCING_RC); VM.assertions._assert(RCBase.isRCObject(srcObj)); } if (RC.GATHER_WRITE_BARRIER_STATS) RC.wbSlow.inc(); if (RCHeader.attemptToLog(srcObj)) { modBuffer.push(srcObj); decBuffer.processChildren(srcObj); RCHeader.makeLogged(srcObj); } } }