/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.tools.math.som;
/**
* The RitterAdaptation provides an implementation of the AdaptationFunction interface for calculation the adaption of a
* node to an input stimulus.
*
* @author Sebastian Land
*/
public class RitterAdaptation implements AdaptationFunction {
private static final long serialVersionUID = 254565250431806677L;
private double learnRateStart = 0.8;
private double learnRateEnd = 0.01;
private double adaptationRadiusStart = 5;
private double adaptationRadiusEnd = 1;
private int lastTime = -1;
private double learnRateCurrent;
private double adaptationRadiusCurrent;
public double[] adapt(double[] stimulus, double[] nodeValue, double distanceFromImpact, int time, int maxtime) {
// calculating time dependent variables only if time has changed
if (lastTime != time) {
lastTime = time;
learnRateCurrent = learnRateStart * Math.pow((learnRateEnd / learnRateStart), (((double) time) / ((double) maxtime)));
adaptationRadiusCurrent = getAdaptationRadius(time, maxtime);
}
double distanceWeightCurrent = Math.exp((-distanceFromImpact * distanceFromImpact) / (2 * adaptationRadiusCurrent * adaptationRadiusCurrent));
double weightNew[] = nodeValue.clone();
if (distanceWeightCurrent > 0.5) {
for (int i = 0; i < weightNew.length; i++) {
if (!Double.isNaN(stimulus[i])) {
weightNew[i] += learnRateCurrent * distanceWeightCurrent * (stimulus[i] - nodeValue[i]);
if (weightNew[i] > 10) {
weightNew[i] = weightNew[i];
}
}
}
}
return weightNew;
}
public double getAdaptationRadius(double[] stimulus, int time, int maxtime) {
return getAdaptationRadius(time, maxtime);
}
private double getAdaptationRadius(int time, int maxtime) {
return adaptationRadiusStart * Math.pow((adaptationRadiusEnd / adaptationRadiusStart), (((double) time) / ((double) maxtime)));
}
public void setAdaptationRadiusStart(double start) {
this.adaptationRadiusStart = start;
}
public void setAdaptationRadiusEnd(double end) {
this.adaptationRadiusEnd = end;
}
public void setLearnRateStart(double start) {
this.learnRateStart = start;
}
public void setLearnRateEnd(double end) {
this.learnRateEnd = end;
}
}