/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.functions;
import java.util.Iterator;
import liblinear.FeatureNode;
import liblinear.Linear;
import liblinear.Model;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.Attributes;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.example.FastExample2SparseTransform;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.learner.PredictionModel;
import com.rapidminer.tools.Tools;
/**
* This is the model of the fast margin learner which learns a linear SVM in linear time.
*
* @author Ingo Mierswa
*/
public class FastMarginModel extends PredictionModel {
private static final long serialVersionUID = 7701199447666181333L;
private Model linearModel;
private boolean useBias;
private String[] attributeConstructions;
public FastMarginModel(ExampleSet headerSet, Model linearModel, boolean useBias) {
super(headerSet);
this.linearModel = linearModel;
this.useBias = useBias;
this.attributeConstructions = com.rapidminer.example.Tools.getRegularAttributeConstructions(headerSet);
}
@Override
public String getName() {
return "Fast Linear Classification";
}
@Override
public ExampleSet performPrediction(ExampleSet exampleSet, Attribute predictedLabel) throws OperatorException {
FastExample2SparseTransform ripper = new FastExample2SparseTransform(exampleSet);
Attribute label = getLabel();
Attribute[] confidenceAttributes = null;
if (label.isNominal() && label.getMapping().size() >= 2) {
confidenceAttributes = new Attribute[linearModel.label.length];
for (int j = 0; j < linearModel.label.length; j++) {
String labelName = label.getMapping().mapIndex(linearModel.label[j]);
confidenceAttributes[j] = exampleSet.getAttributes().getSpecial(Attributes.CONFIDENCE_NAME + "_" + labelName);
}
}
Iterator<Example> i = exampleSet.iterator();
while (i.hasNext()) {
Example e = i.next();
// set prediction
FeatureNode[] currentNodes = FastLargeMargin.makeNodes(e, ripper, this.useBias);
double predictedClass = Linear.predict(linearModel, currentNodes);
e.setValue(predictedLabel, predictedClass);
// use simple calculation for binary cases...
if (label.getMapping().size() == 2) {
double[] functionValues = new double[linearModel.nr_class];
Linear.predictValues(linearModel, currentNodes, functionValues);
double prediction = functionValues[0];
if ((confidenceAttributes != null) && (confidenceAttributes.length > 0)) {
e.setValue(confidenceAttributes[0], 1.0d / (1.0d + java.lang.Math.exp(-prediction)));
if (confidenceAttributes.length > 1) {
e.setValue(confidenceAttributes[1], 1.0d / (1.0d + java.lang.Math.exp(prediction)));
}
}
}
}
return exampleSet;
}
@Override
public String toString() {
StringBuffer result = new StringBuffer();
boolean first = true;
for (int i = 0; i < this.attributeConstructions.length; i++) {
result.append(getCoefficientString(linearModel.w[i], first) + " * " + attributeConstructions[i] + Tools.getLineSeparator());
first = false;
}
if (this.useBias)
result.append(getCoefficientString(linearModel.w[linearModel.w.length - 1], first));
return result.toString();
}
private String getCoefficientString(double coefficient, boolean first) {
if (!first) {
if (coefficient >= 0)
return "+ " + Tools.formatNumber(Math.abs(coefficient));
else
return "- " + Tools.formatNumber(Math.abs(coefficient));
} else {
if (coefficient >= 0)
return " " + Tools.formatNumber(Math.abs(coefficient));
else
return "- " + Tools.formatNumber(Math.abs(coefficient));
}
}
}