/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.tree;
import java.util.List;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeBoolean;
import com.rapidminer.parameter.ParameterTypeDouble;
import com.rapidminer.parameter.UndefinedParameterError;
import com.rapidminer.parameter.conditions.BooleanParameterCondition;
import com.rapidminer.tools.RandomGenerator;
/**
* <p>
* This operator learns decision trees from both nominal and numerical data.
* Decision trees are powerful classification methods which often can also
* easily be understood. The random tree learner works similar to Quinlan's
* C4.5 or CART but it selects a random subset of attributes before it is
* applied. The size of the subset is defined by the parameter subset_ratio.
* </p>
*
* @author Ingo Mierswa
*/
public class RandomTreeLearner extends DecisionTreeLearner {
public static final String PARAMETER_USE_HEURISTIC_SUBSET_RATION = "guess_subset_ratio";
/** The parameter name for "Ratio of randomly chosen attributes to test" */
public static final String PARAMETER_SUBSET_RATIO = "subset_ratio";
public RandomTreeLearner(OperatorDescription description) {
super(description);
}
/** Returns a random feature subset sampling. */
@Override
public SplitPreprocessing getSplitPreprocessing() {
SplitPreprocessing preprocessing = null;
try {
preprocessing = new RandomSubsetPreprocessing(getParameterAsBoolean(PARAMETER_USE_HEURISTIC_SUBSET_RATION), getParameterAsDouble(PARAMETER_SUBSET_RATIO), RandomGenerator.getRandomGenerator(getParameterAsBoolean(RandomGenerator.PARAMETER_USE_LOCAL_RANDOM_SEED), getParameterAsInt(RandomGenerator.PARAMETER_LOCAL_RANDOM_SEED)));
} catch (UndefinedParameterError e) {
// cannot happen
}
return preprocessing;
}
@Override
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = super.getParameterTypes();
ParameterType type = new ParameterTypeBoolean(PARAMETER_USE_HEURISTIC_SUBSET_RATION, "Indicates that log(m) + 1 features are used, otherwise a ratio has to be specified.", true);
type.setExpert(false);
types.add(type);
type = new ParameterTypeDouble(PARAMETER_SUBSET_RATIO, "Ratio of randomly chosen attributes to test", 0.0d, 1.0d, 0.2d);
type.registerDependencyCondition(new BooleanParameterCondition(this, PARAMETER_USE_HEURISTIC_SUBSET_RATION, false, false));
type.setExpert(false);
types.add(type);
types.addAll(RandomGenerator.getRandomGeneratorParameters(this));
return types;
}
}