/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.generator;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.table.AttributeFactory;
import com.rapidminer.tools.Ontology;
import com.rapidminer.tools.RandomGenerator;
/** Generates a gaussian distribution for all attributes.
*
* @author Ingo Mierswa
*/
public class TwoGaussiansClassificationFunction extends ClusterFunction {
/** The list of clusters. */
private List<Cluster> clusters = new LinkedList<Cluster>();
/** The label attribute. */
Attribute label = AttributeFactory.createAttribute("label", Ontology.NOMINAL);
/** The label for the last generated point. */
private double currentLabel;
/** Initializes some gaussian clusters. */
public void init(RandomGenerator random) {
this.clusters.clear();
double sizeSum = 0.0d;
int numberOfClusters = 2;
for (int i = 0; i < numberOfClusters; i++) {
double[] coordinates = new double[numberOfAttributes];
double[] sigmas = new double[numberOfAttributes];
for (int j = 0; j < coordinates.length; j++) {
coordinates[j] = random.nextDoubleInRange(lowerBound, upperBound);
sigmas[j] = random.nextDouble();
}
int labelIndex = label.getMapping().mapString("cluster" + i);
double size = random.nextDouble();
sizeSum += size;
this.clusters.add(new Cluster(coordinates, sigmas, size, labelIndex));
}
Iterator i = this.clusters.iterator();
while (i.hasNext()) {
Cluster cluster = (Cluster) i.next();
cluster.size /= sizeSum;
}
}
public Attribute getLabel() {
return label;
}
public double calculate(double[] att) throws FunctionException {
return currentLabel;
}
public double[] createArguments(int number, RandomGenerator random) throws FunctionException {
if (number <= 0)
throw new FunctionException("Gaussian mixture clustering function", "must have at least one attribute!");
int c = 0;
double prob = random.nextDouble();
double sizeSum = 0.0d;
Cluster cluster = null;
do {
cluster = clusters.get(c);
sizeSum += cluster.size;
if (prob < sizeSum)
break;
c++;
} while (sizeSum < 1);
this.currentLabel = cluster.label;
return cluster.createArguments(random);
}
@Override
protected Set<String> getClusterSet() {
HashSet<String> set = new HashSet<String>();
set.add("cluster0");
set.add("cluster1");
return set;
}
}