/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.performance;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.tools.math.Averagable;
/**
* Returns the average value of the prediction. This criterion can be used to
* detect whether a learning scheme predicts nonsense, e.g. always make the same
* error. This criterion is not suitable for evaluating the performance and
* should never be used as main criterion. The {@link #getFitness()} method
* always returns 0.
*
* @author Ingo Mierswa
* Exp $
*/
public class PredictionAverage extends MeasuredPerformance {
private static final long serialVersionUID = -5316112625406102611L;
private double sum;
private double squaredSum;
private double count;
private Attribute labelAttribute;
private Attribute weightAttribute;
public PredictionAverage() {
}
public PredictionAverage(PredictionAverage pa) {
super(pa);
this.sum = pa.sum;
this.squaredSum = pa.squaredSum;
this.count = pa.count;
this.labelAttribute = (Attribute)pa.labelAttribute.clone();
if (pa.weightAttribute != null)
this.weightAttribute = (Attribute)pa.weightAttribute.clone();
}
@Override
public double getExampleCount() {
return count;
}
@Override
public void countExample(Example example) {
double weight = 1.0d;
if (weightAttribute != null)
weight = example.getValue(weightAttribute);
count += weight;
double v = example.getLabel();
if (!Double.isNaN(v)) {
sum += v * weight;
squaredSum += v * v * weight * weight;
}
}
@Override
public double getMikroAverage() {
return sum / count;
}
@Override
public double getMikroVariance() {
double avg = getMikroAverage();
return (squaredSum / count) - avg * avg;
}
@Override
public void startCounting(ExampleSet set, boolean useExampleWeights) throws OperatorException {
super.startCounting(set, useExampleWeights);
count = 0;
sum = 0.0;
this.labelAttribute = set.getAttributes().getLabel();
if (useExampleWeights)
this.weightAttribute = set.getAttributes().getWeight();
}
@Override
public String getName() {
return "prediction_average";
}
/** Returns 0. */
@Override
public double getFitness() {
return 0.0;
}
@Override
public void buildSingleAverage(Averagable performance) {
PredictionAverage other = (PredictionAverage) performance;
this.sum += other.sum;
this.squaredSum += other.squaredSum;
this.count += other.count;
}
@Override
public String getDescription() {
return "This is not a real performance measure, but merely the average of the predicted labels.";
}
}