/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.meta;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.ExecutionUnit;
import com.rapidminer.operator.Model;
import com.rapidminer.operator.OperatorCreationException;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.learner.lazy.AttributeBasedVotingLearner;
import com.rapidminer.tools.OperatorService;
/**
* This class uses n+1 inner learners and generates n different models
* by using the last n learners. The predictions of these n models are
* taken to create n new features for the example set, which is finally
* used to serve as an input of the first inner learner.
*
* @author Ingo Mierswa, Helge Homburg
*/
public class Vote extends AbstractStacking {
public Vote(OperatorDescription description) {
super(description, "Base Learner");
}
@Override
public String getModelName() {
return "Vote Model";
}
@Override
public boolean keepOldAttributes() {
return false;
}
@Override
protected ExecutionUnit getBaseModelLearnerProcess() {
return getSubprocess(0);
}
@Override
protected Model getStackingModel(ExampleSet stackingLearningSet) throws OperatorException {
try {
return OperatorService.createOperator(AttributeBasedVotingLearner.class).doWork(stackingLearningSet);
} catch (OperatorCreationException e) {
throw new OperatorException(getName() + ": Not possible to create vote operator.");
}
}
}