/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.preprocessing.sampling;
import java.util.List;
import java.util.Random;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.example.set.MappedExampleSet;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.ports.metadata.ExampleSetMetaData;
import com.rapidminer.operator.ports.metadata.MDInteger;
import com.rapidminer.operator.validation.IteratingPerformanceAverage;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeDouble;
import com.rapidminer.parameter.UndefinedParameterError;
import com.rapidminer.tools.RandomGenerator;
/**
* This operator constructs a bootstrapped sample from the given example set. That means
* that a sampling with replacement will be performed. The usual sample size is the number
* of original examples. This operator also offers the possibility to create the inverse
* example set, i.e. an example set containing all examples which are not part of the
* bootstrapped example set. This inverse example set might be used for a bootstrapped
* validation (together with an {@link IteratingPerformanceAverage} operator.
*
* @author Ingo Mierswa
*/
public abstract class AbstractBootstrapping extends AbstractSamplingOperator {
/** The parameter name for "This ratio determines the size of the new example set." */
public static final String PARAMETER_SAMPLE_RATIO = "sample_ratio";
public AbstractBootstrapping(OperatorDescription description) {
super(description);
}
@Override
protected MDInteger getSampledSize(ExampleSetMetaData emd) throws UndefinedParameterError {
if (emd.getNumberOfExamples().isKnown())
return new MDInteger((int) getParameterAsDouble(PARAMETER_SAMPLE_RATIO) * emd.getNumberOfExamples().getValue());
return new MDInteger();
}
public abstract int[] createMapping(ExampleSet exampleSet, int size, Random random) throws OperatorException;
@Override
public ExampleSet apply(ExampleSet exampleSet) throws OperatorException {
RandomGenerator random = RandomGenerator.getRandomGenerator(this);
int[] mapping = createMapping(exampleSet, (int)Math.round(exampleSet.size() * getParameterAsDouble(PARAMETER_SAMPLE_RATIO)), random);
MappedExampleSet bootstrappedExampleSet = new MappedExampleSet(exampleSet, mapping, true);
return bootstrappedExampleSet;
}
@Override
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = super.getParameterTypes();
ParameterType type = new ParameterTypeDouble(PARAMETER_SAMPLE_RATIO, "This ratio determines the size of the new example set.", 0.0d, Double.POSITIVE_INFINITY, 1.0d);
type.setExpert(false);
types.add(type);
types.addAll(RandomGenerator.getRandomGeneratorParameters(this));
return types;
}
}