/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.learner.functions.linear;
import java.util.LinkedList;
import java.util.List;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeDouble;
import com.rapidminer.parameter.UndefinedParameterError;
import com.rapidminer.tools.math.FDistribution;
/**
* This implements an attribute selection method for linear regression that is based on
* a T-Test. It will filter out all attributes whose coefficient is not significantly different
* from 0.
*
* @author Sebastian Land, Ingo Mierswa
*
*/
public class TTestLinearRegressionMethod implements LinearRegressionMethod {
public static final String PARAMETER_SIGNIFICANCE_LEVEL = "alpha";
@Override
public LinearRegressionResult applyMethod(LinearRegression regression, boolean useBias, double ridge, ExampleSet exampleSet, boolean[] isUsedAttribute, int numberOfExamples, int numberOfUsedAttributes, double[] means, double labelMean, double[] standardDeviations, double labelStandardDeviation, double[] coefficientsOnFullData, double errorOnFullData) throws UndefinedParameterError {
double alpha = regression.getParameterAsDouble(PARAMETER_SIGNIFICANCE_LEVEL);
LinearRegressionResult result = filterByPValue(regression, useBias, ridge, exampleSet, isUsedAttribute, means, labelMean, standardDeviations, labelStandardDeviation, coefficientsOnFullData, alpha);
return result;
}
/**
* This method filters the selected attributes depending on their p-value in respect to the significance niveau alpha.
*/
protected LinearRegressionResult filterByPValue(LinearRegression regression, boolean useBias, double ridge, ExampleSet exampleSet, boolean[] isUsedAttribute, double[] means, double labelMean, double[] standardDeviations, double labelStandardDeviation, double[] coefficientsOnFullData, double alpha) throws UndefinedParameterError {
FDistribution fdistribution = new FDistribution(1, exampleSet.size() - coefficientsOnFullData.length);
double generalCorrelation = regression.getCorrelation(exampleSet, isUsedAttribute, coefficientsOnFullData, useBias);
generalCorrelation *= generalCorrelation;
int index = 0;
for (int i = 0; i < isUsedAttribute.length; i++) {
if (isUsedAttribute[i]) {
double coefficient = coefficientsOnFullData[index];
double probability = getPValue(coefficient, i, regression, useBias, ridge, exampleSet, isUsedAttribute, standardDeviations, labelStandardDeviation, fdistribution, generalCorrelation);
if ((probability < 0 ? 1.0d : Math.max(0.0d, 1.0d - probability)) > alpha) {
isUsedAttribute[i] = false;
}
index++;
}
}
LinearRegressionResult result = new LinearRegressionResult();
result.isUsedAttribute = isUsedAttribute;
result.coefficients = regression.performRegression(exampleSet, isUsedAttribute, means, labelMean, ridge);
result.error = regression.getSquaredError(exampleSet, isUsedAttribute, result.coefficients, useBias);
return result;
}
/**
* Returns the PValue of the attributeIndex-th attribute that expresses the probability that
* the coefficient is only random.
*/
protected double getPValue(double coefficient, int attributeIndex, LinearRegression regression, boolean useBias, double ridge, ExampleSet exampleSet, boolean[] isUsedAttribute, double[] standardDeviations, double labelStandardDeviation, FDistribution fdistribution, double generalCorrelation) throws UndefinedParameterError {
double tolerance = regression.getTolerance(exampleSet, isUsedAttribute, attributeIndex, ridge, useBias);
double standardError = Math.sqrt((1.0d - generalCorrelation) / (tolerance * (exampleSet.size() - exampleSet.getAttributes().size() - 1.0d))) * labelStandardDeviation / standardDeviations[attributeIndex];
// calculating other statistics
double tStatistics = coefficient / standardError;
double probability = fdistribution.getProbabilityForValue(tStatistics * tStatistics);
return probability;
}
@Override
public List<ParameterType> getParameterTypes() {
LinkedList<ParameterType> types = new LinkedList<ParameterType>();
types.add(new ParameterTypeDouble(PARAMETER_SIGNIFICANCE_LEVEL, "This is the significance level of the t-test.", 0, 1, 0.05));
return types;
}
}