/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.operator.features.weighting;
import java.util.Iterator;
import java.util.List;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.AttributeWeights;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.OperatorCapability;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeString;
/**
* This operator uses a corpus of examples to characterize a single class by
* setting feature weights. Characteristic features receive higher weights than
* less characteristic features. The weight for a feature is determined by
* calculating the average value of this feature for all examples of the target
* class. This operator assumes that the feature values characterize the
* importance of this feature for an example (e.g. TFIDF or others). Therefore,
* this operator is mainly used on textual data based on TFIDF weighting
* schemes. To extract such feature values from text collections you can use the
* Text plugin.
*
* @author Michael Wurst, Ingo Mierswa
*/
public class CorpusBasedFeatureWeighting extends AbstractWeighting {
/** The parameter name for "The target class for which to find characteristic feature weights." */
private static final String PARAMETER_CLASS_TO_CHARACTERIZE = "class_to_characterize";
public CorpusBasedFeatureWeighting(OperatorDescription description) {
super(description);
//TODO: Add Dictionary Quickfix for parameter.
}
@Override
protected AttributeWeights calculateWeights(ExampleSet es) throws OperatorException {
String targetValue = getParameterAsString(PARAMETER_CLASS_TO_CHARACTERIZE);
double[] weights = generateWeightsForClass(es, targetValue);
double maxWeight = Double.NEGATIVE_INFINITY;
for (double w : weights) {
maxWeight = Math.max(maxWeight, w);
}
AttributeWeights attWeights = new AttributeWeights();
int i = 0;
for (Attribute attribute : es.getAttributes()) {
if (maxWeight > 0.0d) {
attWeights.setWeight(attribute.getName(), weights[i++] / maxWeight);
} else {
attWeights.setWeight(attribute.getName(), 0.0d);
}
}
return attWeights;
}
private double[] generateWeightsForClass(ExampleSet es, String value) {
double[] result = new double[es.getAttributes().size()];
for (int i = 0; i < es.getAttributes().size(); i++)
result[i] = 0.0;
Iterator<Example> er = es.iterator();
Attribute labelAttribute = es.getAttributes().getLabel();
while (er.hasNext()) {
Example e = er.next();
if (e.getValueAsString(labelAttribute).equalsIgnoreCase(value)) {
int index = 0;
for (Attribute attribute : es.getAttributes()) {
result[index] += e.getValue(attribute);
index++;
}
}
}
return result;
}
@Override
public boolean supportsCapability(OperatorCapability capability) {
switch (capability) {
case BINOMINAL_LABEL:
case POLYNOMINAL_LABEL:
case NUMERICAL_ATTRIBUTES:
return true;
default:
return false;
}
}
@Override
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = super.getParameterTypes();
types.add(new ParameterTypeString(PARAMETER_CLASS_TO_CHARACTERIZE, "The target class for which to find characteristic feature weights.", false, false));
return types;
}
}