/*
* RapidMiner
*
* Copyright (C) 2001-2014 by RapidMiner and the contributors
*
* Complete list of developers available at our web site:
*
* http://rapidminer.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package com.rapidminer.tools.math.smoothing;
import java.util.LinkedList;
import java.util.List;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.parameter.ParameterHandler;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeCategory;
/**
* This class provides functionality in order to create SmoothingKernels
* in operators in a parameter depended way.
* @author Sebastian Land
*/
public class SmoothingKernels {
public static final String PARAMETER_SMOOTHING_KERNEL = "smoothing_kernel";
public static final String[] KERNEL_NAMES = new String[] {
"Rectangular",
"Triangular",
"Epanechnikov",
"Bisquare",
"Tricube",
"Triweight",
"Gaussian",
"Exponential",
"McLain"
};
public static final Class<?>[] KERNEL_CLASSES = new Class[] {
RectangularSmoothingKernel.class,
TriangularSmoothingKernel.class,
EpanechnikovSmoothingKernel.class,
BisquareSmoothingKernel.class,
TricubeSmoothingKernel.class,
TriweightSmoothingKernel.class,
GaussianSmoothingKernel.class,
ExponentialSmoothingKernel.class,
McLainSmoothingKernel.class
};
public static final List<ParameterType> getParameterTypes(ParameterHandler handler) {
List<ParameterType> types = new LinkedList<ParameterType>();
ParameterType type = new ParameterTypeCategory(PARAMETER_SMOOTHING_KERNEL, "Determines which kernel type is used to calculate the weights of distant examples.", KERNEL_NAMES, 5);
type.setExpert(false);
types.add(type);
return types;
}
public static final SmoothingKernel createKernel(ParameterHandler handler) throws OperatorException {
int chosenKernel = handler.getParameterAsInt(PARAMETER_SMOOTHING_KERNEL);
try {
return (SmoothingKernel) KERNEL_CLASSES[chosenKernel].newInstance();
} catch (InstantiationException e) {
throw new OperatorException("Could not instanciate distance measure " + KERNEL_NAMES[chosenKernel]);
} catch (IllegalAccessException e) {
throw new OperatorException("Could not instanciate distance measure " + KERNEL_NAMES[chosenKernel]);
}
}
}